
Abstract Domains in Constraint Programming

Series Editor
Narendra Jussien

Abstract Domains in
Constraint Programming

Marie Pelleau

To Eliott, Joaquim and Ambrym

© ISTE Press Ltd 2015
The rights of Marie Pelleau to be identified as the author of this work have been asserted by her in
accordance with the Copyright, Designs and Patents Act 1988.

ISBN 978-1-78548-010-2

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

A CIP record for this book is available from the British Library

Printed and bound in the UK and US

First published 2015 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd
27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices

A catalog record for this book is available from the Library of Congress

For information on all Elsevier publications visit our website at
http://store.elsevier.com/

British Library Cataloguing in Publication Data

Library of Congress Cataloging in Publication Data

Preface

Constraint programming aims at solving hard combinatorial

problems, with a computation time increasing in practice

exponentially. Today, the methods are efficient enough to solve large

industrial problems in a generic framework. However, solvers are

dedicated to a single variable type: integer or real. Solving mixed

problems relies on ad hoc transformations. In another field, abstract

interpretation offers tools to prove program properties by studying an

abstraction of their concrete semantics, that is, the set of possible

values of the variables during an execution. Various representations for

these abstractions have been proposed. They are called abstract

domains. Abstract domains can mix any type of variables, and even

represent relationship between the variables. In this book, we define

abstract domains for constraint programming so as to build a generic

solving method, dealing with both integer and real variables. We will

also study the octagons abstract domain already defined in abstract

interpretation. Guiding the search by the octagonal relations, we obtain

good results on a continuous benchmark. Then, we define our solving

method using abstract interpretation techniques in order to include

existing abstract domains. Our solver, AbSolute, is able to solve mixed

problems and use relational domains.

Marie PELLEAU

February 2015

Introduction

Recent advances in computer science are undeniable. Some are

visible, and others are less known to the general public: today, we are

able to quickly solve many problems that are known to be difficult

(requiring a long computation time). For instance, it is possible to

automatically place thousands of objects of various shapes in a

minimum number of containers in tens of seconds, while respecting

specific constraints: accessibility of goods, non-crush, etc. [BEL 07].

Constraint programming (CP) formalizes such problems using

constraints that describe a result we want to achieve (accessibility of

certain objects, for example). These constraints come with efficient

algorithms to solve greatly combinatorial problems. In another

research area, semantics, abstract interpretation (AI) attacks an

insoluble problem in the general case: the correction of programs. With

strong theoretical tools developed from its creation (fixed-point

theorems), AI manages to prove the properties of programs. In this

area, the effectiveness of methods makes it possible for impressive

applications to be solved: tools in AI have, for instance, managed to

prove that there was no overflow error in the flight controls of the

Airbus A380 which contains almost 500,000 lines of code.

The work presented in this book is at the interface between CP and

AI, two research areas in computer science with a priori quite different

problematics. In CP, the goal is usually to obtain a good computation

time for problems that are, in general, nondeterministic polynomial

xii Abstract Domains in Constraint Programming

time (NP), or to extend existing tools to handle more problems. In AI,

the goal is to analyze very large programs by capturing a maximum of

properties. Despite their differences, there is a common concern in

these two disciplines: identifying an impossible or difficult

(computationally) space to compute precisely (the solutions set in CP

and the semantics of the program in AI). It concerns computing the

relevant overapproximations of this space. CP proposes methods to

carefully surround this space (consistency and propagation), always

with Cartesian overapproximations (boxes in Rn or Zn). AI uses often

less accurate overapproximations but not only Cartesian: they may

have various different shapes (not only boxes but also octagons,

ellipsoids, etc.). These non-Cartesian approximations facilitate more

properties to be captured.

In this book, we exploit the similarities of these overapproximation

methods to integrate AI tools in the methods of CP. We redefine tools

in CP from notions of AI (abstract domains). This is not only an

intellectual exercise. Indeed, by generalizing the description of

overapproximations, there is a significant gain in the expressiveness of

CP. In particular, the problems are treated uniformly for real and

integer variables, which is not currently the case. We also develop the

octagon abstract domain, showing that it is possible to exploit the

relationships captured by this particular domain to solve continuous

problems more effectively. Finally, we perform the opposite task: we

define CP as an abstract operation in AI, and develop a solver capable

of handling practically all abstract domains.

I.1. Context

As mentioned before, the CP and AI have a common concern:

computing efficiently and as accurately as possible an approximation

of a difficult or impossible space. However, the issues and problems of

these two areas are different, and hence so are their fields of

application.

Introduction xiii

I.1.1. Constraint programming

CP, whose origins date back to 1974 [MON 74], is based on the

formalization of problems such as a combination of first-order logic

formulas, i.e. the constraints. A constraint defines a relationship

between the variables of a problem: for example, two objects placed in

the same container have an empty geometric intersection, that is to say,

a heavy object should be placed under a fragile object. This is known

as declarative programming. CP provides efficient generic solution

methods for many combinatorial problems. Academic and industrial

applications are varied: job-shop scheduling problems

[GRI 11, HER 11a], design of substitution tables in cryptography

[RAM 11], scheduling problems [STØ 11], prediction of the

ribonucleic acid (RNA) secondary structure in biology [PER 09],

optical network design [PEL 09] or automatic harmonization in music

[PAC 01].

One of the limitations of the expressiveness of CP methods is that

they are dedicated to the nature of the problem: solvers used for

discrete variable problems are fundamentally different from techniques

dedicated to continuous variable problems. In a way, the semantics of

the problem is different depending on whether one deals with discrete

or continuous problems.

However, many industrial problems are mixed: they contain both

integer and real variables. This is, for example, the case of the problem

of fast power grid repair after a natural disaster [SIM 12] to restore the

power as quickly as possible in the affected areas. In this problem, we

try to establish a plan of action and determine the routes that should be

used by repair crews. Some of the variables are discrete; for example,

each device (generator, line) is associated with a Boolean variable,

indicating whether it is operational or not. Others are real, as the

electrical power on a line. Another example of application is the design

of the topology of a multicast transmission network [CHI 08]: we want

to design a network that is reliable. A network is said to be reliable

when it is still effective even when one of its components is defective,

so that all user communications can pass into the network with the

least possible delay. Again, some of the variables are integers (the

xiv Abstract Domains in Constraint Programming

number of lines in the network) while others are continuous (the flow

of information passing over the network average).

The convergence of discrete and continuous constraints in CP is both

an industrial need and a scientific challenge.

I.1.2. Abstract interpretation

The basis of AI was established in 1976 by Cousot and Cousot

[COU 76]. AI is the theory of semantic approximation [COU 77b] in

which one of the applications is programs proof. The goal is to verify

and prove that a program does not contain a bug, that is to say, runtime

errors. Industrial stakes are high. Indeed, many bugs have made

history, such as the Year 2000 bug, or Y2K, due to system design error.

On January 1, 2000, some systems showed the date of January 1, 1900.

This bug may be repeated on January 19, 2038, on some UNIX

systems [ROB 99]. Another example of a bug is that of the infamous

inaugural flight of the Ariane 5 rocket, which, due to an error in the

navigation system, caused the destruction of the rocket only 40 s after

takeoff.

Every day, new softwares are being developed, corresponding to

thousands or millions of lines of code. To test or verify these programs

manually would require a considerable amount of time. The soundness

of programs cannot be proven in a generic way; thus, AI implements

methods to automatically analyze certain properties of a program. The

analyzers are based on operations on the semantics of programs, that

is, the set of values that can be taken by the variables of the program

during its execution. By computing an overapproximation of these

semantics, the analyzer can, for example, prove that the variables do

not take values beyond the permitted ranges (overflow).

Many analyzers are developed and used for various application

areas, such as aerospace [LAC 98, SOU 07], radiation [POL 06] and

particle physics [COV 11].

Introduction xv

I.2. Problematic

In this book, we focus on CP solving methods, known as complete,

that find the solution set or prove that it is empty, if necessary. These

methods are based on an exhaustive search of the space of all possible

values, also called search space. Using operations to restrict the space

to visit (consistency and propagation), these methods can be

accelerated. Existing methods are dedicated to a certain type of

variables, discrete or continuous. Facing a mixed problem, containing

both discrete and continuous variables, CP offers no real solution and

the techniques available are often limited. Typically, variables are

artificially transformed so that they are all discrete as in the solver

Choco [CHO 10], or all continuous as in the solver RealPaver

[GRA 06]. In AI, analyzed programs often, if not always, contain

different types of variables. Theories of AI integrate many types of

domains, and helped develop analyzers uniformly dealing with discrete

and continuous variables.

We propose to draw inspiration from the work of the AI community

on the different types of domains to provide new solving methods in CP.

These new methods should be able, in particular, to approximate with

various shapes and solve mixed problems.

I.3. Outline of the book

This book is organized as follows: Chapter 1 gives the mandatory

notions of AI and CP to understand our work and an analysis of the

similarities and differences between these two research areas. Based on

the similarities identified between CP and AI, we define abstract

domains for CP in Chapter 2, with a resolution based on these abstract

domains. The use of an example of abstract domain existing in AI in

CP, the octagons, is detailed in Chapter 3. Chapter 4 deals with the

solving method implementation details presented in Chapter 2 for

octagons. Finally, Chapter 5 redefines the concepts of CP using the

techniques and tools available in AI to define a method called abstract

resolution. A prototype implementation, as well as experimental

results, is finally presented.

xvi Abstract Domains in Constraint Programming

I.4. Contributions

The work of this book aims to design new solving techniques for

CP. There are two parts in this work. In the first part, the abstract

domains are defined for CP, so as mandatory operators for the solving

process. These new definitions allow us to define a uniform resolution

framework that no longer depends on the variables type or on the

representation of the variables values. An example of a solver using the

octagon abstract domain and respecting the framework is implemented

in a continuous solver Ibex [CHA 09a], and tested on examples of

continuous problems. In the second part, the different CP operators

needed to solve are defined in AI, allowing us to define a solving

method with the existing operators in AI. This method was then

implemented over Apron [JEA 09], a library of abstract domains.

Most theoretical and practical results of Chapters 2–5 are the subject

of publications in conferences or journals [TRU 10, PEL 11, PEL 13,

PEL 14].

1

State of the Art

In this chapter, we present the notions upon which abstract

interpretation (AI) is based and the principles of constraint

programming (CP). We do not provide an exhaustive presentation of

both areas, but rather give the notions needed for the understanding of

this book. The concepts discussed include those of partially ordered

sets, lattice and fixpoint, which are at the basis of the underlying

theories in both fields. It also includes the in-place tools, such as

narrowing and widening operators in AI or consistency and splitting

operators in CP. Finally, the chapter presents an analysis of the

similitudes between an AI and CP upon which rely the works

presented in this book.

1.1. Abstract interpretation

The founding principles of AI were introduced in 1976 by Patrick

and Cousot [COU 76]. In this section, we only present some aspects of

AI that will be needed afterward. For a more complete presentation, see

[COU 92a, COU 77a].

1.1.1. Introduction to abstract interpretation

One of the applications of AI is to automatically prove that a certain

type of bug does not exist in a program and that there is no error during

a program execution. Let us see an example.

2 Abstract Domains in Constraint Programming

EXAMPLE 1.1 (Backtrace).– Consider the following program:

1: real x, y
2: x ← 2
3: y ← 5
4: y ← y ∗ (x− 2)
5: y ← x/y

The backtrace for this program is:

line x y

1 ? ?

2 2 ?

3 2 5

4 2 0

5 2 NaN Error: division by zero

In toy examples like this one, the backtrace allows us to quickly

detect that the program contains errors. However, real-life programs are

more complex and larger in terms of lines of code; thus, it is impossible

to try all the possible executions. Moreover, the Halting’s theorem states

that it is undecidable to prove that a program terminates.

Nowadays, computer science is omnipresent and critical programs

may contain thousands or even millions of lines of code [HAV 09]. In

these programs, execution errors are directly translated into significant

cost. For example, in 1996, the destruction of the Ariane 5 rocket was

due to an integer overflow [LIO 96]. In 1991, American Patriot

missiles failed to destroy an enemy Scud missile killing 28 soldiers due

to a rounding error that had been propagated through the computations

[MIS 92]. We must, therefore, ensure that such programs do not have

any execution errors. Moreover, this should be done in a reasonable

time without having to run the program. Indeed, sending probes into

space just to check whether the program is correct, in the sense that it

does not contain execution errors, is not a viable solution from an

economical and ecological point of view. This is where AI comes into

play. One of its applications is to verify that a program is correct

during the compilation process, and thus before it is executed. The

main idea is to study the values that can be taken by the variables

State of the Art 3

throughout the program. We call semantics the set of these values and

specification the set of all the desired behaviors such as “never divided

by zero”. If the semantics meets all the given specifications, then we

can say that the program is correct.

An important application of AI is the design of static program

analyzers that are correct and complete. An analyzer is said to be

correct if it answers that a program is correct only when the program

does not contain any execution error. There exist several static

analyzers; we distinguish two types: the correct static analyzers, such

as Astrée [BER 10] and Polyspace [POL 10], and the non-correct static

analyzers, such as Coverity [COV 03]. All these analyzers have

industrial applications. For instance, Astrée was able to automatically

prove the absence of runtime errors in the primary flight control

software of the Airbus A340 fly-by-wire system. More recently, it

analyzed the electric flight control code for the Airbus A380

[ALB 05, SOU 07]. Polyspace was used to analyze the flight control

code for the Ariane 502 rocket [LAC 98] and verify security softwares

of nuclear installations [POL 06]. As for Coverity, it has been used to

verify the code of the curiosity Mars Rover [COV 12] and ensure the

accuracy of the Large Hadron Collider (LHC) software [COV 11], the

particle accelerator that led to the discovery of the Higgs Boson

particle.

Computing the real semantics, called concrete semantics, is very

costly and undecidable in the general case. Indeed, Rice’s theorem

states that any non-trivial property formulated only on the inputs and

outputs of a program is undecidable. Thus, the analyzers compute an

overapproximation of the concrete semantics, the abstract semantics.

The first step is to associate a function with each instruction of the

program. This function modifies the set of possible values for the

variables with respect to the instruction. Thus, the program becomes a

composition of these functions and the set of observable behaviors

corresponds to a fixpoint of this composition. The second step is to

define an abstract domain to restrict the expressivity by keeping only a

subset of properties on the program variables. An abstract domain is a

computable data structure used to depict some of the program

4 Abstract Domains in Constraint Programming

properties. Moreover, abstract domains come with efficient algorithms

to compute different operations on the concrete semantics and allow

the fixpoint to be computed in a finite time. The analyzer always

observes a superset of program behaviors; thus, all the found properties

by the analyzer are verified for the program. However, it can omit some

of them.

EXAMPLE 1.2 (Deducted properties).– Consider the following

program:

1: real x, y
2: x ← random(1, 10)
3: if x mod 2 = 0 then
4: y ← x/2
5: else
6: y ← x− 1
7: end if

As the variable x takes its value between 1 and 10 (instruction 2), we

can deduce that variable y takes its value between 0 and 8. However, for

every execution, y < x is an omitted property by the intervals abstract

domain but can be found with the polyhedra abstract domain.

In the following sections we present the theoretical notions upon

which the AI relies.

1.1.2. General presentation

The AI underlying theory uses notions of fixpoints and lattices.

These notions are recalled in this section.

1.1.2.1. Lattices

Lattices are a well-known notion in computer science. Here, they

are used to express operations on abstract domains and require some

properties, such as being closed and complete.

State of the Art 5

DEFINITION 1.1 (Poset).– A relation � on a non-empty set D is a partial

order (Po) if and only if it is reflexive, antisymmetric and transitive. A
set with a partial order is called partially ordered set (poset). If they
exist, we denote by ⊥ the least element and by � the greatest element of
D.

EXAMPLE 1.3 (Partially ordered set).– Let F be the set of floating-point

numbers according to the IEEE norm [GOL 91]. For a, b ∈ F, we can

define [a, b] = {x ∈ R, a ≤ x ≤ b} as the real interval delimited by the

floating-point numbers a and b, and I = {[a, b], a, b ∈ F} as the set of

intervals. Given an interval I ∈ I, we denote by I (respectively, I) its

lower (respectively, upper) bound and for all point x, x (respectively, x)

its lower (respectively, upper) floating approximation.

Let In be the set of Cartesian products of n intervals. The set In with

the inclusion relation ⊆ is a partially ordered set.

REMARK 1.1.– Note that the inclusion relation ⊆ is a partial order.

Thus, for any non-empty set E, P(E) with this relation is a partially

ordered set.

DEFINITION 1.2 (Lattice).– A partially ordered set (D,�,
,�) is a
lattice if and only if for a, b ∈ D, the pair {a, b} has a least upper
bound (lub) denoted by a
 b, and a greatest lower bound (glb) denoted
by a � b. A lattice is said to be complete if and only if any subset has
both a least upper bound and a greatest lower bound.

In a lattice, any finite subset has a least upper bound and a greatest

lower bound. In a complete lattice, any subset has a least upper bound

and a greatest lower bound, even if the subset is not finite. Thus, a

complete lattice has a greater element denoted by �, and a least

element denoted by ⊥.

REMARK 1.2.– Notice that any finite lattice is automatically complete.

Figure 1.1 gives examples of partially ordered sets represented with

Hasse diagrams. The first figure (Figure 1.1(a)) corresponds to the

power sets of the set {1, 2, 3} with the set inclusion ⊆. This partially

ordered set is finite and has a least element {∅} and a greatest element

6 Abstract Domains in Constraint Programming

{1, 2, 3}. Hence, it is a complete lattice. For instance, the pair

{{1, 2}, {1, 3}} has a least upper bound {1, 2} ∩ {1, 3} = {1} and a

greatest lower bound {1, 2} ∪ {1, 3} = {1, 2, 3}.

{∅}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

{a, b}

a � b

a � b

a) (P({1, 2, 3}),⊆,∪,∩)
1

23

4

5

6
10

12

15

2030

60

a � b

a

b

a � b

b) Set of all the divisors of 60 ordered by the

divisibility relation

{∅}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}{a, b}

a � b

c) (P({1, 2, 3})\{1, 2, 3},⊆,∪,∩)
{∅}

{2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

{a, b}

a � b

a � b

d) (P({1, 2, 3}) \ {1},⊆,∪,∩)

Figure 1.1. Examples of partially ordered sets
represented with Hasse diagram

The second figure (Figure 1.1(b)) corresponds to the set of the

divisors of 60: {1, 2, 3, 5, 6, 10, 12, 15, 20, 30, 60}, with the divisibility

relation. Similarly, this partially ordered set has a least element 1 and a

greatest element 60. Thus, it is a complete lattice. The pair {3, 4} has a

greatest lower bound 1 (their greatest common divisor) and a least

upper bound 12 (their least common multiple).

State of the Art 7

On the contrary, the third example (Figure 1.1(c)) is not a lattice.

Indeed, the pair {{1, 2}, {1, 3}} does not have a least upper bound.

Likewise, if the element {∅} is removed from the lattice (Figure

1.1(a)), the partially ordered set obtained is no longer a lattice.

However, removing any element that is neither the least nor the

greatest element of the lattice does not change the fact that it is a lattice

as shown in Figure 1.1(d).

EXAMPLE 1.4 (Lattice).– It is easily verified that the partially ordered

set (In,⊆,∪,∩) with the least element ⊥ = ∅ and the greatest element

� = Fn is a complete lattice. Let I = I1×· · ·×In and I ′ = I ′1×· · ·×I ′n
be any two elements of In. The pair {I, I ′} has a glb

I ∩ I ′= [max(I1, I
′
1),min(I1, I ′1)]× . . . × [max(In, I

′
n),min(In, I ′n)]

and a lub

I ∪ I ′= [min(I1, I
′
1),max(I1, I ′1)]× . . . × [min(In, I

′
n),max(In, I ′n)]

It follows that any subset has a least upper bound and a greatest lower

bound, and therefore (In,⊆,∪,∩) is a lattice. Moreover, this lattice is

finite; thus, (In,⊆,∪,∩) is a complete lattice.

Lattices are the base set upon which rely the abstract domains in AI.

An important feature of the abstract domains is that they can be linked

by a Galois connection. Note that some abstract domains do not have a

Galois connection (see remark 1.5). Galois connections have been

applied to the semantics by Cousot and Cousot in [COU 77a] as

follows.

DEFINITION 1.3 (Galois connection).– Let D1 and D2 be the two
partially ordered sets; a Galois connection is defined by two
morphisms, an abstraction α:D1 → D2 and a concretization
γ : D2 → D1 such that:

∀X1 ∈ D1, X2 ∈ D2, α(X1) � X2 ⇐⇒ X1 � γ(X2)

Galois connections are usually represented as follows:

D1 −−→←−−
α

γ D2

8 Abstract Domains in Constraint Programming

REMARK 1.3.– An important consequence of this definition is that the

functions α and γ are monotonic for the order � [COU 92a], that is:

∀X1, Y1 ∈ D1, X1 � Y1 ⇒ α(X1) � α(Y1),

and

∀X2, Y2 ∈ D2, X2 � Y2 ⇒ γ(X2) � γ(Y2)

REMARK 1.4.– This definition implies that (α◦γ)(X2) � X2 and X1 �
(γ ◦ α)(X1). X2 is said to be a correct approximation (or abstraction)

of X1.

REMARK 1.5.– Note that for a given abstract domain there can be no

abstraction function. For instance, the polyhedra abstract domain has no

abstraction function. Indeed, there exist an infinity of approximations of

a circle with a polyhedron. Therefore, there is no Galois connection for

the polyhedra abstract domain.

Figure 1.2 shows three different approximations for a circle using

polyhedra. As there exists an infinity of tangent to the circle, there

potentially exists a polyhedron with an infinite number of sides exactly

approximating the circle.

a) b) c)

Figure 1.2. Approximations for a circle

Galois connections are used in CP even though they are not named.

For instance, they are used when solving continuous problems. Indeed,

as the intervals with real bounds are not computer representable, they

State of the Art 9

are approximated as intervals with floating-point bounds. The transition

from one representation to another forms a Galois connection as shown

in the following example.

EXAMPLE 1.5 (Galois connection).– Let J be the set of intervals with

real bounds. Given two partially ordered sets (In,⊂) and (Jn,⊂), there

exists a Galois connection:

Jn −−−→←−−−
αI

γI
In

αI([x1, y1]× · · · × [xn, yn]) = [x1, y1]× · · · × [xn, yn]
γI([a1, b1]× · · · × [an, bn]) = [a1, b1]× · · · × [an, bn]

In this example, the abstraction function αI transforms a Cartesian

product of real bound intervals into a Cartesian product of

floating-point bounds intervals. It approximates each real bound by the

closest floating-point number rounded in F in the corresponding

direction. As for the concretization function, it is straightforward since

a floating-point number is also a real.

1.1.2.2. Concrete/abstract

The concrete domain, denoted by D�, corresponds to the values that

can be taken by the variables throughout the program D� = P(V) with

V a set. Computing the concrete domain can be undecidable; thus, an

approximation is accepted. The approximation of the concrete domain

is called an abstract domain and is denoted by D�. If there exists a

Galois connection between the concrete domain and the abstract

domain, D� −−→←−−
α

γ D�, then any concrete function f � in D� as an

abstraction f � in D� such that

∀X� ∈ D�, (α ◦ f � ◦ γ)(X�) � f �(X�)

This is a consequence of remark 1.4. Moreover, the abstract function

f � is said to be optimal if and only if α ◦ f � ◦ γ = f �.

In the following, we will write D (respectively, f) for a domain

(respectively, function) in general (whether it is concrete or abstract).

10 Abstract Domains in Constraint Programming

We will write D� and f � for a concrete domain and a concrete function,

and D� and f � for an abstract domain and an abstract function.

1.1.2.3. Transfer function

In order to analyze a program, each line of code is analyzed. To do

so, each instruction is associated with a function, called transfer

function, which modifies the possible values for the variables.

DEFINITION 1.4 (Transfer function).– Let C be the line of code to
analyze. Given an initial set of states, a transfer function
F : P(D) → P(D) returns a set of environments corresponding to all
the possible accessible states after the execution of C. We will write
{|C|} the transfer function for the instruction C and {|C|}X when it is
applied to the environments set X .

EXAMPLE 1.6 (Transfer Function for an Affectation).– Consider the

affectation x ← expr with x a variable and expr any expression. The

transfer function {|x ← expr|} only modifies in the initial environments

set the possible values for the variable x.

Let x and y be two variables taken their values in [−10, 10]. The

transfer function {|x ← random(1, 10)|} only modifies the values for

x. We now have x in [1, 10] and y in [−10, 10].

EXAMPLE 1.7 (Transfer function for a condition).– Let us now consider

a Boolean expression; the transfer function only keeps the environments

satisfying the Boolean expression. Let x and y be two variables taken

their values in [−10, 10]. For the Boolean expression x ≤ 0, the transfer

function {|x ≤ 0|} filters the values of x so as to satisfy the Boolean

expression. We now have x in [−10, 0] and y in [−10, 10].

REMARK 1.6.– In the following, any transfer function is supposed to be

monotonic.

State of the Art 11

1.1.2.4. Fixpoint

Abstract interpretation also relies on the notion of fixpoint.

DEFINITION 1.5 (Fixpoint).– Let F be a function; we called fixpoint of
F an element X such that F (X) = X . We denote by lfpX F a least
fixpoint of F greater than X , and gfpX F a greatest fixpoint of F
smaller than X .

REMARK 1.7.– Note that when F is monotonic, if the least or the

greatest fixpoint exists, then it is unique.

Each instruction of the program is associated with a transfer

function. Thus, the program corresponds to a composition of these

functions. Proving that the program is correct is equivalent to

computing the least fixpoint of this composition of functions. The

computation of the fixpoint is mandatory to analyze loops, for instance.

The functions associated with the loop are applied several times until

the fixpoint is reached.

There exist several possible iterative schemas. Let (X1, . . . , Xn) be

the set of environments, where Xi corresponds to the environments set

for the instruction i. We denote by Xj
i the set of environments for the

instruction i at the iteration j. Let Fi be the transfer function for the

instruction i. The most common iterative scheme is the Jacobi iteration

scheme. The value of Xj
i is computed using the environments sets from

the previous iteration:

Xj
i = Fi(X

j−1
1 , . . . , Xj−1

n)

Another iterative scheme is the Gauss–Seidel iteration scheme. It

computes the value of Xj
i using the environments sets already

computed at the current iteration and the environments sets from the

previous iteration:

Xj
i = Fi(X

j
1 , . . . , X

j
i−1, X

j−1
i , Xj−1

i+1 , . . . X
j−1
n)

In the examples of this section, we use the Gauss–Seidel iterations.

