Abstract Domains in Constraint Programming

Series Editor
Narendra Jussien

Abstract Domains in
Constraint Programming

Marie Pelleau

Peas ELSEVIER

To Eliott, Joaquim and Ambrym

First published 2015 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd

27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

For information on all Elsevier publications visit our website at
http://store.elsevier.com/

© ISTE Press Ltd 2015
The rights of Marie Pelleau to be identified as the author of this work have been asserted by her in
accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data

A CIP record for this book is available from the British Library
Library of Congress Cataloging in Publication Data

A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-010-2

Printed and bound in the UK and US

Preface

Constraint programming aims at solving hard combinatorial
problems, with a computation time increasing in practice
exponentially. Today, the methods are efficient enough to solve large
industrial problems in a generic framework. However, solvers are
dedicated to a single variable type: integer or real. Solving mixed
problems relies on ad hoc transformations. In another field, abstract
interpretation offers tools to prove program properties by studying an
abstraction of their concrete semantics, that is, the set of possible
values of the variables during an execution. Various representations for
these abstractions have been proposed. They are called abstract
domains. Abstract domains can mix any type of variables, and even
represent relationship between the variables. In this book, we define
abstract domains for constraint programming so as to build a generic
solving method, dealing with both integer and real variables. We will
also study the octagons abstract domain already defined in abstract
interpretation. Guiding the search by the octagonal relations, we obtain
good results on a continuous benchmark. Then, we define our solving
method using abstract interpretation techniques in order to include
existing abstract domains. Our solver, AbSolute, is able to solve mixed
problems and use relational domains.

Marie PELLEAU
February 2015

Introduction

Recent advances in computer science are undeniable. Some are
visible, and others are less known to the general public: today, we are
able to quickly solve many problems that are known to be difficult
(requiring a long computation time). For instance, it is possible to
automatically place thousands of objects of various shapes in a
minimum number of containers in tens of seconds, while respecting
specific constraints: accessibility of goods, non-crush, etc. [BEL 07].
Constraint programming (CP) formalizes such problems using
constraints that describe a result we want to achieve (accessibility of
certain objects, for example). These constraints come with efficient
algorithms to solve greatly combinatorial problems. In another
research area, semantics, abstract interpretation (AI) attacks an
insoluble problem in the general case: the correction of programs. With
strong theoretical tools developed from its creation (fixed-point
theorems), Al manages to prove the properties of programs. In this
area, the effectiveness of methods makes it possible for impressive
applications to be solved: tools in Al have, for instance, managed to
prove that there was no overflow error in the flight controls of the
Airbus A380 which contains almost 500,000 lines of code.

The work presented in this book is at the interface between CP and
Al two research areas in computer science with a priori quite different
problematics. In CP, the goal is usually to obtain a good computation
time for problems that are, in general, nondeterministic polynomial

xii Abstract Domains in Constraint Programming

time (NP), or to extend existing tools to handle more problems. In Al,
the goal is to analyze very large programs by capturing a maximum of
properties. Despite their differences, there is a common concern in
these two disciplines: identifying an impossible or difficult
(computationally) space to compute precisely (the solutions set in CP
and the semantics of the program in Al). It concerns computing the
relevant overapproximations of this space. CP proposes methods to
carefully surround this space (consistency and propagation), always
with Cartesian overapproximations (boxes in R™ or Z'™). Al uses often
less accurate overapproximations but not only Cartesian: they may
have various different shapes (not only boxes but also octagons,
ellipsoids, etc.). These non-Cartesian approximations facilitate more
properties to be captured.

In this book, we exploit the similarities of these overapproximation
methods to integrate Al tools in the methods of CP. We redefine tools
in CP from notions of Al (abstract domains). This is not only an
intellectual exercise. Indeed, by generalizing the description of
overapproximations, there is a significant gain in the expressiveness of
CP. In particular, the problems are treated uniformly for real and
integer variables, which is not currently the case. We also develop the
octagon abstract domain, showing that it is possible to exploit the
relationships captured by this particular domain to solve continuous
problems more effectively. Finally, we perform the opposite task: we
define CP as an abstract operation in Al, and develop a solver capable
of handling practically all abstract domains.

I.1. Context

As mentioned before, the CP and AI have a common concern:
computing efficiently and as accurately as possible an approximation
of a difficult or impossible space. However, the issues and problems of
these two areas are different, and hence so are their fields of
application.

Introduction xiii

I.1.1. Constraint programming

CP, whose origins date back to 1974 [MON 74], is based on the
formalization of problems such as a combination of first-order logic
formulas, i.e. the constraints. A constraint defines a relationship
between the variables of a problem: for example, two objects placed in
the same container have an empty geometric intersection, that is to say,
a heavy object should be placed under a fragile object. This is known
as declarative programming. CP provides efficient generic solution
methods for many combinatorial problems. Academic and industrial
applications are varied: job-shop scheduling problems
[GRI 11, HER 11a], design of substitution tables in cryptography
[RAM 11], scheduling problems [ST@ 11], prediction of the
ribonucleic acid (RNA) secondary structure in biology [PER 09],
optical network design [PEL 09] or automatic harmonization in music
[PAC O1].

One of the limitations of the expressiveness of CP methods is that
they are dedicated to the nature of the problem: solvers used for
discrete variable problems are fundamentally different from techniques
dedicated to continuous variable problems. In a way, the semantics of
the problem is different depending on whether one deals with discrete
or continuous problems.

However, many industrial problems are mixed: they contain both
integer and real variables. This is, for example, the case of the problem
of fast power grid repair after a natural disaster [SIM 12] to restore the
power as quickly as possible in the affected areas. In this problem, we
try to establish a plan of action and determine the routes that should be
used by repair crews. Some of the variables are discrete; for example,
each device (generator, line) is associated with a Boolean variable,
indicating whether it is operational or not. Others are real, as the
electrical power on a line. Another example of application is the design
of the topology of a multicast transmission network [CHI 08]: we want
to design a network that is reliable. A network is said to be reliable
when it is still effective even when one of its components is defective,
so that all user communications can pass into the network with the
least possible delay. Again, some of the variables are integers (the

xiv. Abstract Domains in Constraint Programming

number of lines in the network) while others are continuous (the flow
of information passing over the network average).

The convergence of discrete and continuous constraints in CP is both
an industrial need and a scientific challenge.

L.1.2. Abstract interpretation

The basis of Al was established in 1976 by Cousot and Cousot
[COU 76]. Al is the theory of semantic approximation [COU 77b] in
which one of the applications is programs proof. The goal is to verify
and prove that a program does not contain a bug, that is to say, runtime
errors. Industrial stakes are high. Indeed, many bugs have made
history, such as the Year 2000 bug, or Y2K, due to system design error.
On January 1, 2000, some systems showed the date of January 1, 1900.
This bug may be repeated on January 19, 2038, on some UNIX
systems [ROB 99]. Another example of a bug is that of the infamous
inaugural flight of the Ariane 5 rocket, which, due to an error in the
navigation system, caused the destruction of the rocket only 40 s after
takeoff.

Every day, new softwares are being developed, corresponding to
thousands or millions of lines of code. To test or verify these programs
manually would require a considerable amount of time. The soundness
of programs cannot be proven in a generic way; thus, Al implements
methods to automatically analyze certain properties of a program. The
analyzers are based on operations on the semantics of programs, that
is, the set of values that can be taken by the variables of the program
during its execution. By computing an overapproximation of these
semantics, the analyzer can, for example, prove that the variables do
not take values beyond the permitted ranges (overflow).

Many analyzers are developed and used for various application
areas, such as aerospace [LAC 98, SOU 07], radiation [POL 06] and
particle physics [COV 11].

Introduction xv

1.2. Problematic

In this book, we focus on CP solving methods, known as complete,
that find the solution set or prove that it is empty, if necessary. These
methods are based on an exhaustive search of the space of all possible
values, also called search space. Using operations to restrict the space
to visit (consistency and propagation), these methods can be
accelerated. Existing methods are dedicated to a certain type of
variables, discrete or continuous. Facing a mixed problem, containing
both discrete and continuous variables, CP offers no real solution and
the techniques available are often limited. Typically, variables are
artificially transformed so that they are all discrete as in the solver
Choco [CHO 10], or all continuous as in the solver RealPaver
[GRA 06]. In Al, analyzed programs often, if not always, contain
different types of variables. Theories of Al integrate many types of
domains, and helped develop analyzers uniformly dealing with discrete
and continuous variables.

We propose to draw inspiration from the work of the Al community
on the different types of domains to provide new solving methods in CP.
These new methods should be able, in particular, to approximate with
various shapes and solve mixed problems.

1.3. Outline of the book

This book is organized as follows: Chapter 1 gives the mandatory
notions of Al and CP to understand our work and an analysis of the
similarities and differences between these two research areas. Based on
the similarities identified between CP and AI, we define abstract
domains for CP in Chapter 2, with a resolution based on these abstract
domains. The use of an example of abstract domain existing in Al in
CP, the octagons, is detailed in Chapter 3. Chapter 4 deals with the
solving method implementation details presented in Chapter 2 for
octagons. Finally, Chapter 5 redefines the concepts of CP using the
techniques and tools available in Al to define a method called abstract
resolution. A prototype implementation, as well as experimental
results, is finally presented.

xvi Abstract Domains in Constraint Programming

I.4. Contributions

The work of this book aims to design new solving techniques for
CP. There are two parts in this work. In the first part, the abstract
domains are defined for CP, so as mandatory operators for the solving
process. These new definitions allow us to define a uniform resolution
framework that no longer depends on the variables type or on the
representation of the variables values. An example of a solver using the
octagon abstract domain and respecting the framework is implemented
in a continuous solver Ibex [CHA 09a], and tested on examples of
continuous problems. In the second part, the different CP operators
needed to solve are defined in Al, allowing us to define a solving
method with the existing operators in Al. This method was then
implemented over Apron [JEA (9], a library of abstract domains.

Most theoretical and practical results of Chapters 2-5 are the subject
of publications in conferences or journals [TRU 10, PEL 11, PEL 13,
PEL 14].

State of the Art

In this chapter, we present the notions upon which abstract
interpretation (AI) is based and the principles of constraint
programming (CP). We do not provide an exhaustive presentation of
both areas, but rather give the notions needed for the understanding of
this book. The concepts discussed include those of partially ordered
sets, lattice and fixpoint, which are at the basis of the underlying
theories in both fields. It also includes the in-place tools, such as
narrowing and widening operators in Al or consistency and splitting
operators in CP. Finally, the chapter presents an analysis of the
similitudes between an Al and CP upon which rely the works
presented in this book.

1.1. Abstract interpretation

The founding principles of Al were introduced in 1976 by Patrick
and Cousot [COU 76]. In this section, we only present some aspects of
Al that will be needed afterward. For a more complete presentation, see
[COU 92a, COU 77a].

1.1.1. Introduction to abstract interpretation

One of the applications of Al is to automatically prove that a certain
type of bug does not exist in a program and that there is no error during
a program execution. Let us see an example.

2 Abstract Domains in Constraint Programming

EXAMPLE 1.1 (Backtrace).— Consider the following program:

1: real x,y

20 x4+ 2

3 Yy<+95

4y yx(r—2)
STy« afy

The backtrace for this program is:

line|z| vy
1?7 ?
2 (2| ?
3 12| 5
4 121 O
5 |2|NaN Error: division by zero

In toy examples like this one, the backtrace allows us to quickly
detect that the program contains errors. However, real-life programs are
more complex and larger in terms of lines of code; thus, it is impossible
to try all the possible executions. Moreover, the Halting’s theorem states
that it is undecidable to prove that a program terminates.

Nowadays, computer science is omnipresent and critical programs
may contain thousands or even millions of lines of code [HAV 09]. In
these programs, execution errors are directly translated into significant
cost. For example, in 1996, the destruction of the Ariane 5 rocket was
due to an integer overflow [LIO 96]. In 1991, American Patriot
missiles failed to destroy an enemy Scud missile killing 28 soldiers due
to a rounding error that had been propagated through the computations
[MIS 92]. We must, therefore, ensure that such programs do not have
any execution errors. Moreover, this should be done in a reasonable
time without having to run the program. Indeed, sending probes into
space just to check whether the program is correct, in the sense that it
does not contain execution errors, is not a viable solution from an
economical and ecological point of view. This is where Al comes into
play. One of its applications is to verify that a program is correct
during the compilation process, and thus before it is executed. The
main idea is to study the values that can be taken by the variables

State of the Art 3

throughout the program. We call semantics the set of these values and
specification the set of all the desired behaviors such as “never divided
by zero”. If the semantics meets all the given specifications, then we
can say that the program is correct.

An important application of Al is the design of static program
analyzers that are correct and complete. An analyzer is said to be
correct if it answers that a program is correct only when the program
does not contain any execution error. There exist several static
analyzers; we distinguish two types: the correct static analyzers, such
as Astrée [BER 10] and Polyspace [POL 10], and the non-correct static
analyzers, such as Coverity [COV 03]. All these analyzers have
industrial applications. For instance, Astrée was able to automatically
prove the absence of runtime errors in the primary flight control
software of the Airbus A340 fly-by-wire system. More recently, it
analyzed the electric flight control code for the Airbus A380
[ALB 05, SOU 07]. Polyspace was used to analyze the flight control
code for the Ariane 502 rocket [LAC 98] and verify security softwares
of nuclear installations [POL 06]. As for Coverity, it has been used to
verify the code of the curiosity Mars Rover [COV 12] and ensure the
accuracy of the Large Hadron Collider (LHC) software [COV 11], the
particle accelerator that led to the discovery of the Higgs Boson
particle.

Computing the real semantics, called concrete semantics, is very
costly and undecidable in the general case. Indeed, Rice’s theorem
states that any non-trivial property formulated only on the inputs and
outputs of a program is undecidable. Thus, the analyzers compute an
overapproximation of the concrete semantics, the abstract semantics.
The first step is to associate a function with each instruction of the
program. This function modifies the set of possible values for the
variables with respect to the instruction. Thus, the program becomes a
composition of these functions and the set of observable behaviors
corresponds to a fixpoint of this composition. The second step is to
define an abstract domain to restrict the expressivity by keeping only a
subset of properties on the program variables. An abstract domain is a
computable data structure used to depict some of the program

4 Abstract Domains in Constraint Programming

properties. Moreover, abstract domains come with efficient algorithms
to compute different operations on the concrete semantics and allow
the fixpoint to be computed in a finite time. The analyzer always
observes a superset of program behaviors; thus, all the found properties
by the analyzer are verified for the program. However, it can omit some
of them.

EXAMPLE 1.2 (Deducted properties).— Consider the following
program:
1: real z,y
2: x < random(1,10)
3: if £ mod 2 = 0 then
4 y<+x/2
5: else
6: y<+ax—1
7: end if

As the variable x takes its value between 1 and 10 (instruction 2), we
can deduce that variable y takes its value between 0 and 8. However, for
every execution, y < x is an omitted property by the intervals abstract
domain but can be found with the polyhedra abstract domain.

In the following sections we present the theoretical notions upon
which the Al relies.
1.1.2. General presentation

The AI underlying theory uses notions of fixpoints and lattices.
These notions are recalled in this section.
1.1.2.1. Lattices

Lattices are a well-known notion in computer science. Here, they
are used to express operations on abstract domains and require some
properties, such as being closed and complete.

State of the Art 5

DEFINITION 1.1 (Poset).— A relation C on a non-empty set D is a partial
order (Po) if and only if it is reflexive, antisymmetric and transitive. A
set with a partial order is called partially ordered set (poset). If they
exist, we denote by | the least element and by T the greatest element of

D.

EXAMPLE 1.3 (Partially ordered set).— Let IF be the set of floating-point
numbers according to the IEEE norm [GOL 91]. For a,b € F, we can
define [a,b] = {z € R,a < x < b} as the real interval delimited by the
floating-point numbers a and b, and I = {[a, b],a,b € F} as the set of
intervals. Given an interval I € I, we denote by I (respectively, I) its
lower (respectively, upper) bound and for all point x, x (respectively, T)
its lower (respectively, upper) floating approximation.

Let I"* be the set of Cartesian products of n intervals. The set I"* with
the inclusion relation C is a partially ordered set.

REMARK 1.1.— Note that the inclusion relation C is a partial order.
Thus, for any non-empty set £, P(E) with this relation is a partially
ordered set.

DEFINITION 1.2 (Lattice).— A partially ordered set (D,C,LI,M) is a
lattice if and only if for a,b € D, the pair {a,b} has a least upper
bound (lub) denoted by a L1b, and a greatest lower bound (glb) denoted
by a M b. A lattice is said to be complete if and only if any subset has
both a least upper bound and a greatest lower bound.

In a lattice, any finite subset has a least upper bound and a greatest
lower bound. In a complete lattice, any subset has a least upper bound
and a greatest lower bound, even if the subset is not finite. Thus, a
complete lattice has a greater element denoted by T, and a least
element denoted by .

REMARK 1.2.— Notice that any finite lattice is automatically complete.

Figure 1.1 gives examples of partially ordered sets represented with
Hasse diagrams. The first figure (Figure 1.1(a)) corresponds to the
power sets of the set {1,2,3} with the set inclusion C. This partially
ordered set is finite and has a least element {()} and a greatest element

6 Abstract Domains in Constraint Programming

{1,2,3}. Hence, it is a complete lattice. For instance, the pair
{{1,2},{1,3}} has a least upper bound {1,2} N {1,3} = {1} and a
greatest lower bound {1,2} U {1,3} = {1,2,3}.

a) (P({1,2,3}),C,U,N) b) Set of all the divisors of 60 ordered by the
divisibility relation

{a,b} {1,2} {1, 3} {2,3}

{2} {3}

{0} arb
o (P({1,2,3)\{1,2,3},C,u,n) & (P({1,2,31) \ {1}, S, 1,N)

Figure 1.1. Examples of partially ordered sets
represented with Hasse diagram

The second figure (Figure 1.1(b)) corresponds to the set of the
divisors of 60: {1,2,3,5,6,10,12, 15,20, 30,60}, with the divisibility
relation. Similarly, this partially ordered set has a least element 1 and a
greatest element 60. Thus, it is a complete lattice. The pair {3,4} has a
greatest lower bound 1 (their greatest common divisor) and a least
upper bound 12 (their least common multiple).

State of the Art 7

On the contrary, the third example (Figure 1.1(c)) is not a lattice.
Indeed, the pair {{1,2},{1,3}} does not have a least upper bound.
Likewise, if the element {()} is removed from the lattice (Figure
1.1(a)), the partially ordered set obtained is no longer a lattice.
However, removing any element that is neither the least nor the
greatest element of the lattice does not change the fact that it is a lattice
as shown in Figure 1.1(d).

EXAMPLE 1.4 (Lattice).— It is easily verified that the partially ordered
set (I", C, U, N) with the least element | = () and the greatest element
T = F"isacomplete lattice. Let I = [; x---xI,and I’ = I x---x I}
be any two elements of I". The pair {1, I'} has a glb

INl'= [max(h,[i),min([i, I x ... x [max(l;n,i),min(z, 1)

and a lub

TU T =[min(fy, I7), max(I1, I7)] x ... x [min(Iy, I,), max (I, I},)]

It follows that any subset has a least upper bound and a greatest lower
bound, and therefore (I, C,U,N) is a lattice. Moreover, this lattice is
finite; thus, (I", C, U, N) is a complete lattice.

Lattices are the base set upon which rely the abstract domains in Al
An important feature of the abstract domains is that they can be linked
by a Galois connection. Note that some abstract domains do not have a
Galois connection (see remark 1.5). Galois connections have been
applied to the semantics by Cousot and Cousot in [COU 77a] as
follows.

DEFINITION 1.3 (Galois connection).— Let Dy and Dy be the two
partially ordered sets; a Galois connection is defined by two
morphisms, an abstraction o«:Dy — Do and a concretization
v : Dy — Dy such that:

VX1 €Dy, X2 €Dg,a(X1) C Xy <= X Cy(Xz)
Galois connections are usually represented as follows:

0
'D1<?D2

8 Abstract Domains in Constraint Programming

REMARK 1.3.— An important consequence of this definition is that the
functions o and ~y are monotonic for the order C [COU 92a], that is:

VX1,Y1 €D, X1 C Y1 = of(X)) C a(lr),
and

VX9,Ys € Dy, Xo C Yo = y(X2) T v(Y2)

REMARK 1.4.— This definition implies that (aoy)(X32) C X2 and X1 T
(v o a)(X7). Xo is said to be a correct approximation (or abstraction)
of X 1.

REMARK 1.5.— Note that for a given abstract domain there can be no
abstraction function. For instance, the polyhedra abstract domain has no
abstraction function. Indeed, there exist an infinity of approximations of
a circle with a polyhedron. Therefore, there is no Galois connection for
the polyhedra abstract domain.

Figure 1.2 shows three different approximations for a circle using
polyhedra. As there exists an infinity of tangent to the circle, there
potentially exists a polyhedron with an infinite number of sides exactly
approximating the circle.

a) b) <)

Figure 1.2. Approximations for a circle

Galois connections are used in CP even though they are not named.
For instance, they are used when solving continuous problems. Indeed,
as the intervals with real bounds are not computer representable, they

State of the Art 9

are approximated as intervals with floating-point bounds. The transition
from one representation to another forms a Galois connection as shown
in the following example.

EXAMPLE 1.5 (Galois connection).— Let J be the set of intervals with
real bounds. Given two partially ordered sets (I", C) and (J", C), there
exists a Galois connection:

—

ar(wr,yi] X -+ X [T, yal) = (21, 73] X -+ X [0, 7]
’}/]1([(11,()1] X X [an,bn]) = [al,bl] X oo X [an,bn]

J" <_1H_]In
o

In this example, the abstraction function oy transforms a Cartesian
product of real bound intervals into a Cartesian product of
floating-point bounds intervals. It approximates each real bound by the
closest floating-point number rounded in F in the corresponding
direction. As for the concretization function, it is straightforward since
a floating-point number is also a real.

1.1.2.2. Concrete/abstract

The concrete domain, denoted by D”, corresponds to the values that
can be taken by the variables throughout the program D = P(V) with
V' a set. Computing the concrete domain can be undecidable; thus, an
approximation is accepted. The approximation of the concrete domain
is called an abstract domain and is denoted by DF. If there exists a
Galois connection between the concrete domain and the abstract
domain, D’ % DF, then any concrete function f? in D° as an

abstraction f* in D such that
VX! e D (o f2 o) (XF) T fH(XY)

This is a consequence of remark 1.4. Moreover, the abstract function
f* is said to be optimal if and only if v o f? oy = f£.

In the following, we will write D (respectively, f) for a domain
(respectively, function) in general (whether it is concrete or abstract).

10 Abstract Domains in Constraint Programming

We will write D” and f” for a concrete domain and a concrete function,
and D and f* for an abstract domain and an abstract function.

1.1.2.3. Transfer function

In order to analyze a program, each line of code is analyzed. To do
so, each instruction is associated with a function, called transfer
function, which modifies the possible values for the variables.

DEFINITION 1.4 (Transfer function).— Let C' be the line of code to
analyze. Given an initial set of states, a transfer function
F : P(D) — P(D) returns a set of environments corresponding to all
the possible accessible states after the execution of C. We will write
{C|} the transfer function for the instruction C and {C} X when it is
applied to the environments set X.

EXAMPLE 1.6 (Transfer Function for an Affectation).— Consider the
affectation = < expr with x a variable and expr any expression. The
transfer function {z < expr]} only modifies in the initial environments
set the possible values for the variable z.

Let = and y be two variables taken their values in [—10, 10]. The
transfer function {z < random(1,10)} only modifies the values for
x. We now have z in [1, 10] and y in [—10, 10].

EXAMPLE 1.7 (Transfer function for a condition).— Let us now consider
a Boolean expression; the transfer function only keeps the environments
satisfying the Boolean expression. Let = and y be two variables taken
their values in [—10, 10]. For the Boolean expression = < 0, the transfer
function {z < O} filters the values of x so as to satisfy the Boolean
expression. We now have z in [—10, 0] and y in [—10, 10].

REMARK 1.6.— In the following, any transfer function is supposed to be
monotonic.

State of the Art 11

1.1.2.4. Fixpoint

Abstract interpretation also relies on the notion of fixpoint.

DEFINITION 1.5 (Fixpoint).— Let F' be a function; we called fixpoint of
F an element X such that F(X) = X. We denote by lfpx F' a least
fixpoint of F greater than X, and gfpx F' a greatest fixpoint of F
smaller than X.

REMARK 1.7.— Note that when F' is monotonic, if the least or the
greatest fixpoint exists, then it is unique.

Each instruction of the program is associated with a transfer
function. Thus, the program corresponds to a composition of these
functions. Proving that the program is correct is equivalent to
computing the least fixpoint of this composition of functions. The
computation of the fixpoint is mandatory to analyze loops, for instance.
The functions associated with the loop are applied several times until
the fixpoint is reached.

There exist several possible iterative schemas. Let (X1,...,X,,) be
the set of environments, where X; corresponds to the environments set
for the instruction 7. We denote by X ZJ the set of environments for the
instruction ¢ at the iteration j. Let F; be the transfer function for the
instruction ¢. The most common iterative scheme is the Jacobi iteration
scheme. The value of X? is computed using the environments sets from
the previous iteration:

X/ =F(xi . xiTh

Another iterative scheme is the Gauss—Seidel iteration scheme. It
computes the value of X ZJ using the environments sets already
computed at the current iteration and the environments sets from the
previous iteration:

, ; ; i1 j—1 i—
X = F(xy, . xD X3 xa L xh

In the examples of this section, we use the Gauss—Seidel iterations.

