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INTRODUCTION

A to Z of Mathematicians contains the fasci-
nating biographies of 150 mathematicians:
men and women from a variety of cultures, time
periods, and socioeconomic backgrounds, all of
whom have substantially influenced the history
of mathematics. Some made numerous discov-
eries during a lifetime of creative work; others
made a single contribution. The great Carl
Gauss (1777-1855) developed the statistical
method of least squares and discovered count-
less theorems in algebra, geometry, and analysis.
Sir Isaac Newton (1643-1727), renowned as the
primary inventor of calculus, was a profound re-
searcher and one of the greatest scientists of all
time. From the classical era there is Archimedes
(287 B.c.E~212 B.C.E.), who paved the way for
calculus and made amazing investigations into
mechanics and hydrodynamics. These three are
considered by many mathematicians to be the
princes of the field; most of the persons in this
volume do not attain to the princes’ glory, but
nevertheless have had their share in the un-
folding of history.

THE MATHEMATICIANS

A to Z of Mathematicians focuses on individuals
whose historical importance is firmly estab-
lished, including classical figures from the an-
cient Greek, Indian, and Chinese cultures as
well as the plethora of 17th-, 18th-, and 19th-

century mathematicians. I have chosen to

exclude those born in the 20th century (with
the exception of Kurt Gédel), so that the likes
of Dame Mary Cartwright, Andrey Kolmogorov,
and John Von Neumann are omitted; this choice
reflects the opinion that true greatness is made
lucid only through the passage of time. The ear-
lier mathematicians were often scientists as well,
also contributing to astronomy, philosophy, and
physics, among other disciplines; however, the
latter persons, especially those of the 19th cen-
tury, were increasingly specialized in one partic-
ular aspect of pure or applied mathematics.
Modern figures who were principally known for
fields other than mathematics—such as Albert
Einstein and Richard Feynman—have been
omitted, despite their mathematical accom-
plishments. Being of the opinion that statistics
is one of the mathematical sciences, | have in-
cluded a smattering of great statisticians. Several
sources were consulted in order to compile a di-
verse list of persons—a list that nevertheless de-
livers the main thrust of mathematical history.
I have attempted to make this material ac-
cessible to a general audience, and as a result the
mathematical ideas are presented in simple
terms that cut to the core of the matter. In some
cases precision was sacrificed for accessibility.
However, due to the abstruse nature of 19th- and
20th-century mathematics, many readers may
still have difficulty. I suggest that they refer to
Facts On File’s handbooks in algebra, calculus,
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and geometry for unfamiliar terminology. It
is helpful for readers to have knowledge of
high school geometry and algebra, as well as
calculus.

After each entry, a short list of additional
references for further reading is provided. The
majority of the individuals can be found in
the Dictionary of Scientific Biography (New York,

1970-90), the Encyclopaedia Britannica (http://
www.eb.com), and the online MacTutor History
of Mathematics archive (http://www-gap.dcs.
st-and.ac.uk/~history); so these references have
not been repeated each time. In compiling
references | tried to restrict sources to those
articles written in English that were easily ac-
cessible to college undergraduates.



%< Abel, Niels Henrik
(1802-1829)
Norwegian
Algebra

The modest Norwegian mathematician Niels
Abel made outstanding contributions to the the-
ory of elliptic functions, one of the most popu-
lar mathematical subjects of the 19th century.
Struggle, hardship, and uncertainty character-
ized his life; but under difficult conditions he still
managed to produce a prolific and brilliant body
of mathematical research. Sadly, he died young,
without being able to attain the glory and recog-
nition for which he had labored.

Niels Henrik Abel was born the son of
Soren Abel, a Lutheran pastor, and Ane Marie
Simonson, the daughter of a wealthy merchant.
Pastor Abel’s first parish was in the island of
Finnody, where Niels Abel was born in 1802.
Shortly afterward, Abel’s father became in-
volved in politics.

Up to this time Abel and his brothers had
received instruction from their father, but in
1815 they were sent to school in Oslo. Abel’s
performance at the school was marginal, but in
1817 the arrival of a new mathematics teacher,
Bernt Holmboe, greatly changed Abel’s fate.
Holmboe recognized Abel’s gift for mathemat-
ics, and they commenced studying LEONHARD

EULER and the French mathematicians. Soon
Abel had surpassed his teacher. At this time he
was greatly interested in the theory of algebraic
equations. Holmboe was delighted with his dis-
covery of the young mathematician, and he en-
thusiastically acquainted the other faculty with
the genius of Abel.

During his last year at school Abel at-
tempted to solve the quintic equation, an out-
standing problem from antiquity; but he failed
(the equation has no rational solutions).
Nevertheless, his efforts introduced him to the
theory of elliptic functions. Meanwhile, Abel’s
father fell into public disgrace due to alcoholism,
and after his death in 1820 the family was left
in difficult financial circumstances.

Abel entered the University of Sweden in
1821, and was granted a free room due to his ex-
treme poverty. The faculty even supported him
out of its own resources; he was a frequent guest
of the household of Christoffer Hansteen, the
leading scientist at the university. Within the
first year, Abel had completed his preliminary
degree, allowing him the time to pursue his own
advanced studies. He voraciously read every-
thing he could find concerning mathematics,
and published his first few papers in Hansteen’s
journal after 1823.

In summer 1823 Abel received assistance
from the faculty to travel to Copenhagen, in
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Niels Abel, one of the founders of the theory of
elliptic functions, a generalization of trigonometric
functions (Courtesy of the Library of Congress)

order to meet the Danish mathematicians. The
trip was inspirational; he also met his future fi-
ancée, Christine Kemp. When he returned to
Oslo, Abel began work on the quintic equation
once again, but this time, he attempted to prove
that there was no radical expression for the so-
lution. He was successful, and had his result pub-
lished in French at his own expense. Sadly, there
was no reaction from his intended audience—
even CARL FRIEDRICH GAUSS was indifferent.
Abel’s financial problems were complicated
by his engagement to Kemp, but he managed to
secure a small stipend to study languages in
preparation for travel abroad. After this, he
would receive a modest grant for two years of
foreign study. In 1825 he departed with some
friends for Berlin, and on his way through

Copenhagen made the acquaintance of August
Crelle, an influential engineer with a keen in-
terest for mathematics. The two became lifelong
friends, and Crelle agreed to start a German jour-
nal for the publication of pure mathematics.
Many of Abel’s papers were published in the first
volumes, including an expanded version of his
work on the quintic.

One of Abel’s notable papers in Crelle’s
Journal generalized the binomial formula, which
gives an expansion for the nth power of a bino-
mial expression. Abel turned his thought toward
infinite series, and was concerned that the sums
had never been stringently determined. The re-
sult of his research was a classic paper on power
series, with the determination of the sum of the
binomial series for arbitrary exponents.
Meanwhile, Abel failed to obtain a vacant po-
sition at the University of Sweden; his former
teacher Holmboe was instead selected. It is note-
worthy that Abel maintained his nobility of
character throughout his frustrating life.

In spring 1826 Abel journeyed to Paris and
presented a paper to the French Academy of
Sciences that he considered his masterpiece: It
treated the sum of integrals of a given algebraic
function, and thereby generalized Euler’s relation
for elliptic integrals. This paper, over which Abel
labored for many months but never published,
was presented in October 1826, and AUGUSTIN-
LOUIS CAUCHY and ADRIEN-MARIE LEGENDRE were
appointed as referees. A report was not forth-
coming, and was not issued until after Abel’s
death. It seems that Cauchy was to blame for the
tardiness, and apparently lost the manuscript.
Abel later rewrote the paper (neither was this
work published), and the theorem described
above came to be known as Abel’s theorem.

After this disappointing stint in France,
Abel returned to Berlin and there fell ill with
his first attack of tuberculosis. Crelle assisted
him with his illness, and tried to procure a po-
sition for him in Berlin, but Abel longed to re-
turn to Norway. Abel’s new research transformed
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the theory of elliptic integrals to the theory of
elliptic functions by using their inverses.
Through this duality, elliptic functions became
an important generalization of trigonometric
functions. As a student in Oslo, Abel had al-
ready developed much of the theory, and this pa-
per presented his thought in great detail.

Upon his return to Oslo in 1827, Abel had
no prospects of a position, and managed to sur-
vive by tutoring schoolboys. In a few months
Hansteen went on leave to Siberia and Abel be-
came his substitute at the university. Meanwhile,
Abel’s work had started to stimulate interest
among European mathematicians. In early 1828
Abel discovered that he had a young German
competitor, CARL JACOBI, in the field of elliptic
functions. Aware of the race at hand, Abel wrote
a rapid succession of papers on elliptic functions
and prepared a book-length memoir that would
be published posthumously.

It seems that Abel had the priority of dis-
covery over Jacobi in the area of elliptic func-
tions; however, it is also known that Gauss was
aware of the principles of elliptic functions long
before either Abel or Jacobi, and had decided
not to publish. At this time Abel started a cor-
respondence with Legendre, who was also inter-
ested in elliptic functions. The mathematicians
in France, along with Crelle, attempted to se-
cure employment for Abel, and even petitioned
the monarch of Sweden.

Abel’s health was deteriorating, but he con-
tinued to write papers frantically. He spent sum-
mer 1828 with his fiancée, and when visiting her
at Christmastime he became feverish due to ex-
posure to the cold. As he prepared for his return
to Oslo, Abel suffered a violent hemorrhage, and
was confined to bed. At the age of 26 he died
of tuberculosis on April 26, 1829; two days later,
Crelle wrote him jubilantly that he had secured
Abel an appointment in Berlin. In 1830 the
French Academy of Sciences awarded its Grand
Prix to Abel and Jacobi for their brilliant math-
ematical discoveries.

Abel became recognized as one of the great-
est mathematicians after his death, and he truly
accomplished much despite his short lifespan.
The theory of elliptic functions would expand
greatly during the later 19th century, and Abel’s
work contributed significantly to this develop-
ment.

Further Reading

Bell, E. Men of Mathematics. New York: Simon and
Schuster, 1965.

Ore, O. Niels Henrik Abel, Mathematician Extraordi-
nary. Minneapolis: University of Minnesota
Press, 1974.

Rosen, M. I. “Niels Henrik Abel and the Equation of
the Fifth Degree,” American Mathematical Monthly
102 (1995): 495-505.

Stander, D. “Makers of Modern Mathematics: Niels
Henrik Abel,” Bulletin of the Institute of Mathemat-
ics and Its Applications 23, nos. 67 (1987): 107-
109.

%% Adelard of Bath
(unknown—ca. 1146)
British
Arithmetic

Little is known of the personal life of Adelard
of Bath, but his work has been of great impor-
tance to the early revival of mathematics and
natural philosophy during the medieval period.
His translation of Greek and Arabic classics
into Latin enabled the knowledge of earlier so-
cieties to be preserved and disseminated in
Europe.

Adelard was a native of Bath, England, but
his exact birth date is not known. He traveled
widely in his life, first spending time in France,
where he studied at Tours. For the next seven
years he journeyed afar, visiting Salerno, Sicily,
Cilicia, Syria, and perhaps even Palestine; it is
thought that he also dwelt in Spain. His latter
travels gave him an acquaintance with Arabic
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language and culture, though he may have
learned Arabic while still in Sicily. By 1130 he
had returned to Bath, and his writings from that
time have some association with the royal court.
One of his works, called Astrolabe, was appar-
ently composed between 1142 and 1146; this is
the latest recorded date of his activity.

Adelard made two contributions—De eo-
dem et diverso (On sameness and diversity) and
the Questiones naturales (Natural questions)—
to medieval philosophy, written around 1116
and 1137, respectively. In De eodem et diverso,
there is no evidence of Arabic influence, and
he expresses the views of a quasi-Platonist. The
Questiones naturales treats various topics in nat-
ural philosophy and shows the impact of his
Arabic studies. Adelard’s contribution to me-
dieval science seems to lie chiefly in his trans-
lation of various works from Arabic.

His early endeavors in arithmetic, published
in Regule abaci (By rule of the abacus), were quite
traditional—his work reflected current arith-
metical knowledge in Europe. These writings
were doubtlessly composed prior to his familiar-
ity with Arabic mathematics. Adelard also wrote
on the topics of arithmetic, geometry, music, and
astronomy. Here, the subject of Indian numer-
als and their basic operations is introduced as of
fundamental importance.

Many scholars believe that Adelard was the
first translator to present a full Latin version of
EUCLID OF ALEXANDRIA’s Elements. This began
the process whereby the Elements would come to
dominate late medieval mathematics; prior to
Adelard’s translation from the Arabic, there
were only incomplete versions taken from the
Greek. The first version was a verbatim tran-
scription from the Arabic, whereas Adelard’s
second version replaces some of the proofs with
instructions or summaries. This latter edition be-
came the most popular, and was most commonly
studied in schools. A third version appears to be
a commentary and is attributed to Adelard; it
enjoyed some popularity as well.

All the later mathematicians of Europe
would read Euclid, either in Latin or Greek; in-
deed, this compendium of geometric knowledge
would become a staple of mathematical education
up to the present time. The Renaissance, and the
consequent revival of mathematical discovery,
was only made possible through the rediscovery
of ancient classics and their translations. For his
work as a translator and commentator, Adelard
is remembered as an influential figure in the his-
tory of mathematics.

Further Reading

Burnett, C. Adelard of Bath: An English Scientist and
Arabist of the Early Twelfth Century. London:
Warburg Institute, University of London, 1987.

83 Agnesi, Maria Gaetana
(1718-1799)
Italian
Algebra, Analysis

Maria Gaetana Agnesi is known as a talented
mathematician of the 18th century, and indeed
was one of the first female mathematicians in
the Western world. A mathematical prodigy
with great linguistic talents, Agnesi made her
greatest contribution through her clear exposi-
tion of algebra, geometry, and calculus; her col-
leagues acknowledged the value of her work
within her own lifetime.

Born the eldest child of Pietro Agnesi and
Anna Fortunato Brivio, Agnesi showed early in-
terest in science. Her father, a wealthy professor
of mathematics at the University of Bologna, en-
couraged and developed these interests. He estab-
lished a cultural salon in his home, where his
daughter would present and defend theses on a va-
riety of scientific and philosophical topics. Some
of the guests were foreigners, and Maria demon-
strated her talent for languages by conversing with
them in their own tongue; by age 11 she was fa-
miliar with Greek, German, Spanish, and Hebrew,
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having already mastered French by age five. At
age nine she prepared a lengthy speech in Latin
that promulgated higher education for women.

The topics of these theses, which were usu-
ally defended in Latin, included logic, ontology,
mechanics, hydromechanics, elasticity, celestial
mechanics and universal gravitation, chemistry,
botany, zoology, and mineralogy. Her second
published work, the Propositiones philosophicae
(Propositions of philosophy, 1738), included al-
most 200 of these disputations. Agnesi’s mathe-
matical interests were developing at this time;
at age 14 she was solving difficult problems in
ballistics and analytic geometry. But after the
publication of the Propositiones philosophicae, she
decided to withdraw from her father’s salon,
since the social atmosphere was unappealing to
her—in fact, she was eager to join a convent,
but her father dissuaded her.

Nevertheless, Agnesi withdrew from the ex-
troverted social life of her childhood, and devoted

Maria Agnesi studied the bell-shaped cubic curve called
the versiera, which is more commonly known as the
“witch of Agnesi.” (Courtesy of the Library of Congress)

the next 10 years of her life to mathematics.
After a decade of intense effort, she produced
her Instituzioni analitiche ad uso della gioventi ital-
iana (Analytical methods for the use of young
[talians) in 1748. The two-volume work won im-
mediate praise among mathematicians and
brought Agnesi public acclaim. The objective of
the thousand-page book was to present a com-
plete and comprehensive treatment of algebra
and analysis, including and emphasizing the new
concepts of the 18th century. Of course, the de-
velopment of differential and integral calculus
was still in progress at this time; Agnesi would
incorporate this contemporary mathematics into
her treatment of analysis.

The material spanned elementary algebra
and the classical theory of equations, coordinate
geometry, the differential and integral calculus,
infinite series, and the solution of elementary
differential equations. Many of the methods and
results were due solely to Agnesi, although her
humble nature made her overly thorough in giv-
ing credit to her predecessors. Her name is of-
ten associated with a certain cubic curve called
the wversiera and known more commonly as the
“witch of Agnesi.” She was unaware that PIERRE
DE FERMAT had studied the equation previously
in 1665. This bell-shaped curve has many in-
teresting properties and some applications in
physics, and has been an ongoing source of fas-
cination for many mathematicians.

Agnesi’s treatise received wide acclaim for
its excellent treatment and clear exposition.
Translations into French and English from the
original Italian were considered to be of great
importance to the serious student of mathemat-
ics. Pope Benedict XIV sent her a congratula-
tory note in 1749, and in 1750 she was appointed
to the chair of mathematics and natural philos-
ophy at the University of Bologna.

However, Agnesi’s reclusive and humble
personality led her to accept the position only
in honor, and she never actually taught at the
university. After her father’s death in 1752, she
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began to withdraw from all scientific activity—
she became more interested in religious studies
and social work. She was particularly con-
cerned with the poor, and looked after the ed-
ucation of her numerous younger brothers. By
1762 she was quite removed from mathemat-
ics, so that she declined the University of
Turin’s request that she act as referee for JOSEPH-
LOUIS LAGRANGE’s work on the calculus of vari-
ations. In 1771 Agnesi became the director of
a Milanese home for the sick, a position she
held until her death in 1799.

It is interesting to note that the sustained
activity of her intellect over 10 years was able
to produce the Instituzioni, a work of great ex-
cellence and quality. However, she lost all in-
terest in mathematics soon afterward and made
no further contributions to that discipline.
Agnesi’s primary contribution to mathematics is
the Instituzioni, which helped to disseminate
mathematical knowledge and train future gen-
erations of mathematicians.

Further Reading

Grinstein, L., and P. Campbell. Women of Mathematics.
New York: Greenwood Press, 1987.

Truesdell, C. “Correction and Additions for Maria
Gaetana Agnesi,” Archive for History of Exact
Science 43 (1991): 385-386.

< Alembert, Jean d’ (Jean Le Rond
d’Alembert)
(1717-1783)
French
Mechanics, Calculus

In the wave of effort following SIR ISAAC NEW-
TON’s pioneering work in mechanics, many
mathematicians attempted to flesh out the
mathematical aspects of the new science. Jean
d’Alembert was noteworthy as one of these in-
tellectuals, who contributed to astronomy, fluid
mechanics, and calculus; he was one of the first

Jean d’Alembert formulated several laws of motion,
including d’Alembert’s principle for decomposing
constrained motions. (Courtesy of the National Library
of Medicine)

persons to realize the importance of the limit in
calculus.

Jean Le Rond d’Alembert was born in Paris
on November 17, 1717. He was the illegitimate
son of a famous salon hostess and a cavalry offi-
cer named Destouches-Canon. An artisan named
Rousseau raised the young d’Alembert, but his
father oversaw his education; he attended a
Jansenist school, where he learned the classics,
rhetoric, and mathematics.

D’Alembert decided on a career as a math-
ematician, and began communicating with the
Académie des Sciences in 1739. During the next
few years he wrote several papers treating the in-
tegration of differential equations. Although he
had no formal training in higher mathematics,
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d’Alembert was familiar with the works of
Newton, as well as the works of JAKOB BERNOULLI
and JOHANN BERNOULLI.

In 1741 he was made a member of the
Académie, and he concentrated his efforts on
some problems in rational mechanics. The Traité
de dynamique (Treatise on dynamics) was the
fruit of his labor, a significant scientific work that
formalized the new science of mechanics. The
lengthy preface disclosed d’Alembert’s philoso-
phy of sensationalism (this idea states that sense
perception, not reason, is the starting point for
the acquisition of knowledge). He developed
mechanics from the simple concepts of space and
time, and avoided the notion of force.
D’Alembert also presented his three laws of mo-
tion, which treated inertia, the parallelogram
law of motion, and equilibrium. It is noteworthy
that d’Alembert produced mathematical proofs
for these laws.

The well-known d’Alembert’s principle was
also introduced in this work, which states that
any constrained motion can be decomposed in
terms of its inertial motion and a resisting (or
constraining) force. He was careful not to over-
value the impact of mathematics on physics—
he said that geometry’s rigor was tied to its sim-
plicity. Since reality was always more complicated
than a mathematical abstraction, it is more diffi-
cult to establish truth.

In 1744 he produced a new volume called
the Traité de 'équilibre et du mouvement des fluides
(Treatise on the equilibrium and movement of
fluids). In the 18th century a large amount of
interest focused on fluid mechanics, since fluids
were used to model heat, magnetism, and elec-
tricity. His treatment was different from that of
DANIEL BERNOULLI, though the conclusions were
similar. D’Alembert also examined the wave
equation, considering string oscillation problems
in 1747. Then in 1749 he turned toward celestial
mechanics, publishing the Recherches sur la pré-
cession des équinoxes et sur la nutation de l'axe de la
terre (Research on the precession of the equinoxes and

on the nodding of the earth’s axis), which treated
the topic of the gradual change in the position
of the earth’s orbit.

Next, d’Alembert competed for a prize at
the Prussian Academy, but blamed LEONHARD
EULER for his failure to win. D’Alembert published
his Essai d’'une nouvelle théorie de la résistance des
fluides (Essay on a new theory of the resistance of
fluids) in 1752, in which the differential hydro-
dynamic equations were first expressed in terms
of a field. The so-called hydrodynamic paradox
was herein formulated—namely, that the flow
before and behind an obstruction should be the
same, resulting in the absence of any resistance.
D’Alembert did not solve this problem, and was
to some extent inhibited by his bias toward con-
tinuity; when discontinuities arose in the solu-
tions of differential equations, he simply threw
the solution away.

In the 1750s, interested in several nonsci-
entific topics, d’Alembert became the science
editor of the Encyclopédie (Encyclopedia). Later
he wrote on the topics of music, law, and reli-
gion, presenting himself as an avid proponent of
Enlightenment ideals, including a disdain for
medieval thought.

Among his original contributions to math-
ematics, the ratio test for the convergence of an
infinite series is noteworthy; d’Alembert viewed
divergent series as nonsensical and disregarded
them (this differs markedly from Euler’s view-
point). D’Alembert was virtually alone in his
view of the derivative as the limit of a function,
and his stress on the importance of continuity
probably led him to this perspective. In the the-
ory of probability d’Alembert was quite handi-
capped, being unable to accept standard solutions
of gambling problems.

D’Alembert was known to be a charming,
witty man. He never married, although he lived
with his lover Julie de Lespinasse until her death
in 1776. In 1772 he became the secretary of the
Académie Francaise (the French Academy), and
he increasingly turned toward humanitarian



8 Apollonius of Perga

concerns. His later years were marked by bitter-
ness and despair; he died in Paris on October 29,
1783.

Although he was well known as a preemi-
nent scientist and philosopher, d’Alembert’s
mathematical achievements deserve special
recognition. He greatly advanced the theory of
mechanics in several of its branches, by con-
tributing to its mathematical formulation and by
consideration of several concrete problems.
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g3 Apollonius of Perga
(ca. 262 B.c.e.—~190 B.C.E.)
Greek
Geometry

Greek mathematics continued its development
from the time of EUCLID OF ALEXANDRIA, and af-
ter ARCHIMEDES OF SYRACUSE one of the greatest
mathematicians was Apollonius of Perga. He is
mainly known for his contributions to the the-
ory of conic sections (those plane figures ob-
tained by slicing a cone at various angles). The
fascination in this subject, revived in the 16th
and 17th centuries, has continued into modern
times with the onset of projective geometry.
Little information on his life has been pre-
served from the ravages of time, but it seems that
Apollonius flourished sometime between the
second half of the third century and the early
second century B.C.E. Perga, a small Greek city

in the southern portion of what is now Turkey,
was his town of birth. Apollonius dwelt for some
time in Alexandria, where he may have studied
with the pupils of Euclid, and he later visited
both Pergamum and Ephesus.

His most famous work, the Conics, was com-
posed in the early second century B.C.E., and it
soon became recognized as a classic text.
Archimedes, who died around 212 B.C.E., ap-
pears to be the immediate mathematical prede-
cessor of Apollonius, who developed many of the
Syracusan’s ideas. The Conics was originally di-
vided into eight books, and had been intended
as a treatise on conic sections. Before Apollonius’s
time, the basics of the theory of conic sections
were known: Parabolas, hyperbolas, and ellipses
could be obtained by appropriately slicing a cone
with right, obtuse, or acute vertex angles, re-
spectively. Apollonius employed an alternative
method of construction that involved slicing a
double cone at various angles, keeping the ver-
tex angle fixed (this is the approach taken in
modern times). This method had the advantage
of making these curves accessible to the “appli-
cation of areas,” a geometrical formulation of
quadratic equations that in modern time would
be expressed algebraically. It is apparent that
Apollonius’s approach was refreshingly origi-
nal, although the actual content of the Conics
may have been well known. Much terminology,
such as parabola, hyperbola, and ellipse, is due to
Apollonius, and he generalizes the methods for
generating sections.

The Conics contains much material that was
already known, though the organization was ac-
cording to Apollonius’s method, which smoothly
joined together numerous fragments of geomet-
rical knowledge. Certain elementary results were
omitted, and some few novel facts were included.
Besides the material on the generation of sections,
Apollonius described theorems on the rectangles
contained by the segments of intersecting chords
of a conic, the harmonic properties of pole and
polar, properties of the focus, and the locus of
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three and four lines. He discusses the formation
of a normal line to a conic, as well as certain in-
equalities of conjugate diameters. This work,
compared with other Greek literature, is quite
difficult to read, since the lack of modern nota-
tion makes the text burdensome, and the content
itself is quite convoluted. Nevertheless, persistent
study has rewarded many gifted mathematicians,
including SIR ISAAC NEWTON, PIERRE DE FERMAT,
and BLAISE PASCAL, who drew enormous inspi-
ration from Apollonius’s classic text.

In the work of PAPPUS OF ALEXANDRIA is con-
tained a summary of Apollonius’s other mathe-
matical works: Cutting off of a Ratio, Cutting off
of an Area, Determinate Section, Tangencies,
Inclinations, and Plane Loci. These deal with var-
ious geometrical problems, and some of them in-
volve the “application of an area.” He uses the
Greek method of analysis and synthesis: The
problem in question is first presumed solved, and
a more easily constructed condition is deduced
from the solution (“analysis”); then from the lat-
ter construction, the original is developed (“syn-
thesis”). It seems that Apollonius wrote still
other documents, but no vestige of their content
has survived to the present day. Apparently, he
devised a number system for the representation
of enormous quantities, similar to the notational
system of Archimedes, though Apollonius gen-
eralized the idea. There are also references to the
inscribing of the dodecahedron in the sphere,
the study of the cylindrical helix, and a general
treatise on the foundations of geometry.

So Apollonius was familiar with all aspects
of Greek geometry, but he also contributed to
the Euclidean theory of irrational numbers and
derived approximations for pi more accurate
than Archimedes’. His thought also penetrated
the science of optics, where his deep knowledge
of conics assisted the determination of various
reflections caused by parabolic and spherical
mirrors. Apollonius was renowned in his own
time as a foremost astronomer, and he even
earned the epithet of Epsilon, since the Greek

letter of that name bears a resemblance in shape
to the Moon. He calculates the distance of Earth
to Moon as roughly 600,000 miles, and made
various computations of the orbits of the plan-
ets. In fact, Apollonius is an important player in
the development of geometrical models to ex-
plain planetary motion; HIPPARCHUS OF RHODES
and CLAUDIUS PTOLEMY, improving upon his the-
ories, arrived at the Ptolemaic system, a feat of
the ancient world’s scientific investigation pos-
sessed of sweeping grandeur and considerable
longevity.

There was no immediate successor to
Apollonius, though his Conics was recognized as
a superb accomplishment. Various simple com-
mentaries were produced, but interest declined
after the fall of Rome, and only the first four
books continued to be translated in Byzantium.
Another three books of the Conics were trans-
lated into Arabic, and Islamic mathematicians
remained intrigued by his work, though they
made few advancements; the final (eighth) book
has been lost. In the late 16th and early 17th
centuries, several translations of Apollonius’s
Conics appeared in Europe and were voraciously
studied by French mathematicians such as RENE
DESCARTES, Pierre de Fermat, GIRARD DESARGUES,
and Blaise Pascal. When Descartes propounded
his analytic geometry, which took an algebraic,
rather than constructive or geometrical, ap-
proach to curves and sections, interest in
Apollonius’s classic treatise began to wane.
However, later in the 19th century, the Conics
experienced a resurrection of curiosity with the
introduction of projective geometry.
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83  Archimedes of Syracuse
(ca. 287 B.Cc.E.=212 B.C.E.)
Greek
Geometry, Mechanics

Of the mathematicians of Greek antiquity,
Archimedes should be considered the greatest.
His contributions to geometry and mechanics,
as well as hydrostatics, place him on a higher
pedestal than his contemporaries. And as his
works were gradually translated and introduced
into the West, he exerted as great an influence
there as his thought already had in Byzantium
and Arabia. In his method of exhaustion can be
seen a classical predecessor of the integral cal-
culus, which would be formally developed by
BLAISE PASCAL, GOTTFRIED WILHELM VON LEIBNIZ,
SIR ISAAC NEWTON, and others in the 17th cen-
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Archimedes is the great Greek mathematician who
formulated the principles of hydromechanics and
invented early techniques of integral calculus.
(Courtesy of the National Library of Medicine)

tury. His life story alone has inspired many
mathematicians.

As with many ancient persons, the exact de-
tails of Archimedes’ life are difficult to ascertain,
since there are several accounts of variable qual-
ity. His father was the astronomer Phidias, and
it is possible that Archimedes was a kinsman of
the tyrant of Syracuse, King Hieron II. Certainly
he was intimate with the king, as his work The
Sandreckoner was dedicated to Hieron’s son
Gelon. Born in Syracuse, Archimedes departed
to Alexandria in order to pursue an education
in mathematics; there he studied EUCLID OF
ALEXANDRIA and assisted the development of
Euclidean mathematics. But it was in Syracuse,
where he soon returned, that he made most of
his discoveries.

Although renowned for his contributions to
mathematics, Archimedes also designed numer-
ous mechanical inventions. The water snail, in-
vented in Egypt to aid irrigation, was a screwlike
contraption used to raise water. More impressive
are the stories relating his construction and ap-
plication of the compound pulley: Hieron had re-
quested Archimedes to demonstrate how a small
force could move a large weight. The mathe-
matician attached a rope to a large merchant ship
that was loaded with freight and passengers, and
ran the line through a system of pulleys. In this
manner, seated at a distance from the vessel,
Archimedes was able to effortlessly draw the boat
smoothly off the shore into the harbor.

Similar to the pulley, Archimedes discovered
the usefulness of the lever, noting that the longer
the distance from the fulcrum, the more weight the
lever could move. Logically extending this prin-
ciple, he asserted that it was feasible to move the
world, given a sufficiently long lever. Another
popular story relates that Hieron gave Archi-
medes the task of ascertaining whether a certain
crown was made of pure gold, or whether it had
been fraudulently alloyed with silver. As
Archimedes pondered this puzzle, he came upon
the bath, and noticed that the amount of water
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displaced was equal to the amount of his body
that was immersed. This immediately put him in
mind of a method to solve Hieron’s problems,
and he leapt out of the tub in joy, running naked
toward his home, shrieking “Eureka!”

His skill in mechanical objects was un-
equaled, and Hieron often put him to use in im-
proving the defenses of the city, insisting that
Archimedes’ intellect should be put to some
practical application. When Marcellus and the
Romans later came to attack Syracuse, they
found the city impregnable due to the multi-
plicity of catapults, mechanical arms, burning
mirrors, and various ballistic devices that
Archimedes had built. Archimedes wrote a book
entitled On Spheremaking, in which he describes
how to construct a model planetarium designed
to simulate the movement of Sun, Moon, and
planets. It seems that Archimedes was familiar
with Archytas’s heliocentrism, and made use of
this in his planetarium.

According to Plutarch, Archimedes was
dedicated to pure theory and disdained the prac-
tical applications of mathematics to engineering;
only those subjects free of any utility to society
were considered worthy of wholehearted pursuit.
Archimedes’ mathematical works consist mainly
of studies of area and volume, and the geomet-
rical analysis of statics and hydrostatics. In com-
puting the area or volume of various plane and
solid figures, he makes use of the so-called
Lemma of Archimedes and the “method of ex-
haustion.” This lemma states that the difference
of two unequal magnitudes can be formed into
a ratio with any similar magnitude; thus, the dif-
ference of two lines will always be a line and not
a point. The method of exhaustion involves sub-
tracting a quantity larger than half of a given
magnitude indefinitely, and points to the idea of
the eternal divisibility of the continuum (that
one can always take away half of a number and
still have something left). These ideas border on
notions of the infinitesimal—the infinitely
small—and the idea of a limit, which are key

ingredients of integral calculus; however, the
Greeks were averse to the notion of infinity and
infinitesimals, and Archimedes shied away from
doing anything that he felt would be regarded as
absurd.

The method of exhaustion, which was used
rarely in Euclid’s Elements, will be illustrated
through the following example: In On the
Measurement of the Circle, Archimedes assumes,
for the sake of contradiction, that the area of a
right triangle with base equal to the circumfer-
ence and height equal to the radius of the circle
is actually greater than the area of the circle.
Then he is able, using the Lemma of Archimedes,
to inscribe a polygon in the circle, with the same
area as the triangle; this contradiction shows that
the area of the triangle cannot be greater than
the circle, and he makes a similar argument that
it cannot be less.

The basic concept of the method of ap-
proximation, which is similar to the method of
exhaustion, is to inscribe regular figures within
a given plane figure and solid such that the re-
maining area or volume is steadily reduced; the
area or volume of the regular figures can be eas-
ily calculated, and this will be an increasingly
accurate approximation. The remaining area or
volume is “exhausted.” Of course, the modern
way to obtain an exact determination of meas-
ure is via the limit; Archimedes avoided this is-
sue by demonstrating that the remaining area or
volume could be made as small as desired by in-
scribing more regular figures. Of course, one
could perform the same procedure with circum-
scribing regular figures.

He also applied these methods to solids,
computing the surface area and volume of the
sphere, and the volume of cones and pyramids.
Archimedes’ methods were sometimes purely
geometrical, but at times used principles from
statics, such as a “balancing method.” His knowl-
edge of the law of the lever and the center of
gravity for the triangle, together with his ap-
proximation and exhaustion methods, enabled
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him to improve the proofs of known theorems
as well as establish completely new results.

Archimedes also made some contributions in
the realm of numerical calculations, producing
some highly accurate approximations for pi and
the square root of three. In The Sandreckoner he
devises a notation for enormous numbers and es-
timates the number of grains of sand to fill the
universe. In On the Equilibrium of Planes he proves
the law of the lever from geometrical principles,
and in On Floating Bodies he explains the con-
cept of hydrostatic pressure. The so-called
Principle of Archimedes states that solids placed
in a fluid will be lighter in the fluid by an amount
equal to the weight of the fluid displaced.

His influence on later mathematics was ex-
tensive, although Archimedes may not have en-
joyed much fame in his own lifetime. Later
Greeks, including PAPPUS OF ALEXANDRIA and
Theon of Alexandria, wrote commentaries on
his writings, and later still, Byzantine authors
studied his work. From Byzantium his texts came
into the West before the start of the Renaissance;
meanwhile, Arabic mathematicians were familiar
with Archimedes, and they exploited his meth-
ods in their own researches into conic sections.
In the 12th century translations from Arabic into
Latin appeared, which LEONARDO FIBONACCI
made use of in the 13th century. By the 1400s
knowledge of Archimedes had expanded
throughout parts of Europe, and his mathematics
later influenced SIMON STEVIN, Johannes Kepler,
GALILEO GALILE], and BONAVENTURA CAVALIERI.

Perhaps the best-known story concerning
Archimedes relates his death, which occurred in
212 B.C.E. during the siege of Syracuse by the
Romans. Apparently, he was not concerned with
the civic situation, and was busily making sand
diagrams in his home (at this time he was at least
75 years old). Although the Roman general
Marcellus had given strict orders that the famous
Sicilian mathematician was not to be harmed, a
Roman soldier broke into Archimedes’ house
and spoiled his diagram. When the aged math-

ematician vocally expressed his displeasure, the
soldier promptly slew him.

Archimedes was an outstanding mathemati-
cian and scientist. Indeed, he is considered by
many to be one of the greatest three mathemati-
cians of all time, along with CARL FRIEDRICH GAUSS
and Newton. Once discovered by medieval
Europeans, his works propelled the discovery of
calculus. It is interesting that this profound intel-
lect was remote in time and space from the great
classical Greek mathematicians; Archimedes
worked on the island of Syracuse, far from Athens,
the source of much Greek thought, and he worked
centuries after the decline of the Greek culture.
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< Aristarchus of Samos
(ca. 310 B.c.e.—230 B.C.E.)
Greek
Trigonometry

Renowned as the first person to propose a he-
liocentric theory (that the planets revolve
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around the Sun) of the solar system, Aristarchus
was both an important astronomer and a first-
rate mathematician. Little is known of his life,
but his works have survived, in which he calcu-
lates various astronomical distances millennia
before the invention of modern telescopes.

Apparently, Aristarchus was born on the is-
land of Samos, which lies in the Aegean Sea
close to the city of Miletus, a center for science
and learning in the lonian civilization. He stud-
ied under Strato of Lampsacos, director of the
Lyceum founded by Aristotle. It is thought that
Aristarchus was taught by Strato in Alexandria
rather than Athens. His approximate dates are
determined by the records of CLAUDIUS PTOLEMY
and ARCHIMEDES OF SYRACUSE. Aristarchus’s only
work still in existence is his treatise On the Sizes
and Distances of the Sun and Moon.

Among his peers, Aristarchus was known as
“the mathematician,” which may have been
merely descriptive. At that time, the discipline
of astronomy was considered part of mathemat-
ics, and Aristarchus’s On Sizes and Distances
primarily treats astronomical calculations. Accor-
ding to Vitruvius, a Roman architect, Aristarchus
was an expert in all branches of mathematics,
and was the inventor of a popular sundial con-
sisting of a hemispherical bowl with a vertical
needle poised in the center. It seems that his dis-
coveries in On Sizes and Distances of the vast scale
of the universe fostered an interest in the physi-
cal orientation of the solar system, eventually
leading to his heliocentric conception of the Sun
in the center.

Heliocentrism has its roots in the early
Pythagoreans, a religious/philosophical cult that
thrived in the fifth century B.C.E. in southern
[taly. Philolaus (ca. 440 B.C.E.) is attributed with
the idea that the Earth, Moon, Sun, and planets
orbited around a central “hearth of the universe.”
Hicetas, a contemporary of Philolaus, believed in
the axial rotation of the Earth. The ancient his-
torians credit Heraclides of Pontus (ca. 340
B.C.E.) with the Earth’s rotation about the Sun,

but Aristarchus is said to be the first to develop
a complete heliocentric theory: The Earth orbits
the Sun while at the same time spinning about
its axis.

It is interesting that the heliocentric theory
did not catch on. The idea did not attract much
attention, and the philosophical speculations of
the Ionian era were already waning, to be re-
placed by the increasingly mathematical feats of
APOLLONIUS OF PERGA, HIPPARCHUS OF RHODES,
and Ptolemy. Due to trends in intellectual and
religious circles, geocentrism became increas-
ingly popular. Not until Nicolaus Copernicus,
who lived 18 centuries later, resurrected
Aristarchus’s hypothesis did opinion turn away
from considering the Earth as the center of the
universe.

Living after EUCLID OF ALEXANDRIA and be-
fore Archimedes, Aristarchus was able to produce
rigorous arguments and geometrical construc-
tions, a distinguishing characteristic of the better
mathematicians. The attempt to make various
measurements of the solar system without a tele-
scope seems incredible, but it involved the sim-
ple geometry of triangles. With the Sun (S),
Earth (E), and Moon (M) as the three vertices
of a triangle, the angle EMS will be a right an-
gle when the Moon is exactly half in shadow.
Through careful observation, it is possible to
measure the angle MES, and thus the third an-
gle ESM can be deduced. Once these angles are
known, the ratio of the length of the legs, that
is, the distance to the Moon and the distance to
the Sun, can be determined. Of course, this pro-
cedure is fraught with difficulties, and any slight
error in estimating the angles will throw off the
whole calculation. Aristarchus estimated angle
MES to be approximately 87 degrees, when it is
actually 89 degrees and 50 minutes. From this,
he deduces that the distance to the Sun is about
20 times greater than the distance to the Moon,
when in actuality it is 400 times greater. His the-
ory was sound, but Aristarchus was inhibited by
his crude equipment.
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This is discussed in On Sizes and Distances,
where he states several assumptions and from
these proves the above estimate on the dis-
tance to the Sun and also states that the di-
ameter of Sun and Moon are related in the
same manner (the Sun is about 20 times as
wide across as the Moon). He also computes
that the ratio of the diameter of the Sun to the
diameter of the Earth is between 19:3 and 43:6,
an underestimate.

It is noteworthy that trigonometry had not
yet been developed, and yet Aristarchus devel-
oped methods that essentially estimated the
sines of small angles. Without precise means of
calculation, Aristarchus was unable to attain ac-
curate results, although his method was brilliant.
Because heliocentrism was not accepted at the
time, Aristarchus failed to achieve much fame
in his own lifetime. Nevertheless, he was one of
the first mathematicians to obtain highly accu-
rate astronomical measurements.
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83 Aryabhata I
(476-550)
Indian
Algebra, Geometry

Little is known of the life of Aryabhata, who is
called Aryabhata I in order to distinguish him
from another mathematician of the same name
who lived four centuries later. Aryabhata played
a role in the development of the modern cur-
rent number system and made contributions to

number theory at a time when much of Europe
was enveloped in ignorance.

He was born in India and had a connection
with the city Kusumapura, the capital of the
Guptas during the fourth and fifth centuries; this
place is thought to be the city of his birth.
Certainly, his Aryabhatiya was written in
Kusumapura, which later became a center of
mathematical learning.

Aryabhata wrote two works: the Aryabhatiya
in 499, when he was 23 years old, and another
treatise, which has been lost. The former work
is a short summary of Hindu mathematics, con-
sisting of three sections on mathematics, time
and planetary models, and the sphere. The sec-
tions on mathematics contain 66 mathematical
rules without proof, dealing with arithmetic, al-
gebra, plane trigonometry, and spherical
trigonometry. However, it also contains more ad-
vanced knowledge, such as continued fractions,
quadratic equations, infinite series, and a table
of sines. In 800 this work was translated into
Arabic, and had numerous Indian commentators.

Aryabhata’s number system, the one he used
in his book, gives a number for each of the 33
letters of the Indian alphabet, representing the
first 25 numbers as well as 30, 40, 50, 60, 70, 80,
90, and 100. It is noteworthy that he was famil-
iar with a place-value system, so that very large
numbers could easily be described and manipu-
lated using this alphabetical notation. Indeed, it
seems likely that Aryabhata was familiar with
zero as a placeholder. The Indian place-value
number system, which would later greatly influ-
ence the construction of the modern system, fa-
cilitated calculations that would be infeasible
under more primitive models, such as Roman
numerals. Aryabhata appears to be the origina-
tor of this place-value system.

In his examination of algebra, Aryabhata
first investigates linear equations with integer
coefficients—apparently, the Aryabhatiya is the
first written work to do so. The question arose
from certain problems of astronomy, such as the
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computation of the period of the planets. The
technique is called kuttaka, which means “to pul-
verize,” and consists of breaking the equation
into related problems with smaller coefficients;
the method is similar to the Euclidean algorithm
for finding the greatest common divisor, but is
also related to the theory of continued fractions.

In addition, Aryabhata gave a value for pi that
was accurate to eight decimal places, improving
on ARCHIMEDES OF SYRACUSE’s and APOLLONIUS OF
PERGA’s approximations. Scholars have argued
that he obtained this independently of the
Greeks, having some particular method for ap-
proximating pi, but it is not known exactly how
he did it; Aryabhata also realized that pi was an
irrational number. His table of sines gives ap-
proximate values at intervals of less than four
degrees, and uses a trigonometric formula to ac-
complish this.

Aryabhata also discusses rules for summing
the first n integers, the first n squares, and the
first n cubes; he gives formulas for the area of tri-
angles and of circles. His results for the volumes
of a sphere and of a pyramid are incorrect, but
this may have been due to a translation error.
Of course, these latter results were well known
to the Greeks and might have come to Aryabhata
through the Arabs.

As far as the astronomy present in the text,
which the mathematics is designed to elucidate,
there are several interesting results. Aryabhata
gives an excellent approximation to the circum-
ference of the Earth (62,832 miles), and explains
the rotation of the heavens through a theory of

the axial rotation of the Earth. Ironically, this
(correct) theory was thought ludicrous by later
commentators, who altered the text in order to
remedy Aryabhata’s mistakes. Equally remark-
able is his description of the planetary orbits as
ellipses—only highly accurate astronomical data
provided by superior telescopes allowed
European astronomers to differentiate between
circular and elliptical orbits. Aryahbhata gives a
correct explanation of the solar and lunar
eclipses, and attributes the light of the Moon to
reflected sunlight.

Aryabhata was of great influence to later
Indian mathematicians and astronomers. Perhaps
most relevant for the later development of math-
ematics was his place-number system. His theo-
ries were exceedingly advanced considering the
time in which he lived, and the accurate compu-
tations of astronomical measurements illustrated
the power of his number system.
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83 Babbage, Charles
(1792-1871)
British
Analysis

The name of Charles Babbage is associated with
the early computer. Living during the industrial
age, in a time when there was unbridled opti-
mism in the potential of machinery to improve
civilization, Babbage was an advocate of mecha-
nistic progress, and spent much of his lifetime
pursuing the invention of an “analytic engine.”
Although his ambitious project eventually ended
in failure, his ideas were important to the subse-
quent develop of computer logic and technology.
Born on December 26, 1792, in Teignmouth,
England, to affluent parents, Babbage exhibited
great curiosity for how things worked. He was
educated privately by his parents, and by the
time he registered at Cambridge in 1810, he was
far ahead of his peers. In fact, it seems that he
knew more than even his teachers, as mathe-
matics in England had lagged far behind the rest
of Europe. Along with George Peacock and John
Herschel, he campaigned vigorously for the re-
suscitation of English mathematics. Together with
Peacock and Herschel, he translated Lacroix’s
Differential and Integral Calculus, and became an
ardent proponent of GOTTFRIED WILHELM VON
LEIBNIZ’s notation over SIR ISAAC NEWTON's.

16

Upon graduating, Babbage became involved
in many diverse activities: He wrote several pa-
pers on the theory of functions and applied math-
ematics and helped to found several progressive
learned societies, such as the Astronomical
Society in 1820, the British Association in 1831,
and the Statistical Society of London in 1834.
He was recognized for his excellent contributions
to mathematics, being made a fellow of the
Royal Society in 1816 and Lucasian professor of
mathematics at Cambridge in 1827; he held this
latter position for 12 years without teaching, be-
cause he was becoming increasingly absorbed by
the topic of mechanizing computation.

Babbage viewed science as an essential part
of civilization and culture, and even thought
that it was the government’s responsibility to en-
courage and advance science by offering grants
and prizes. Although this viewpoint is fairly
common today, Babbage was one of its first ad-
vocates; before his time, much of science and
mathematics was conducted in private research
by men of leisure. He also advocated pedagogi-
cal reform, realizing that great teaching was cru-
cial for the future development of mathematics;
however, he did little with his chair at Cambridge
toward realizing this goal.

His interests were remarkably diverse, in-
cluding probability, cryptanalysis, geophysics,
astronomy, altimetry, ophthalmoscopy, statistical
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Charles Babbage, inventor of an early mechanical
computer and founder of computer science (Courtesy
of the Library of Congress)

linguistics, meteorology, actuarial science, light-
house technology, and climatology. Babbage de-
vised a convenient notation that simplified the
drawing and reading of engineering charts. His
literature on operational research, concerned
with mass production in the context of pin man-
ufacture, the post office, and the printing trade,
has been especially influential.

Babbage was, as a young man, lively and so-
ciable, but his growing obsession with con-
structing computational aids made him bitter
and grumpy. Once he realized the extent of er-
rors in existing mathematical tables, his mind
turned to the task of using machinery to accom-
plish faultless calculations. Initially, he imagined
a steam-powered calculator for the computation
of trigonometric quantities; he began to envision
a machine that would calculate functions and
also print out the results.

The theory behind his machine was the
method of finite differences—a discrete analog

of the continuous differential calculus. Any
polynomial of nth degree can be reduced, through
successive differences, to a constant; the inverse
of this procedure, taking successive sums, would
be capable of computing the values of a polyno-
mial, given some initial conditions. In addition,
this concept could be extended to most nonra-
tional functions, including logarithms; this
would allow the mechanistic computation of the
value of an arbitrary function.

Unfortunately, Babbage did not succeed. He
continually thought up improvements for the sys-
tem, becoming more ambitious for the final
“Difference Engine Number One.” This machine
would handle sixth-order differences and 20 dec-
imal numbers—a goal more grandiose than feasi-
ble. He never completed the project, though a
Swedish engineer, in Babbage’s own lifetime, built
a modest working version based on a magazine
account of the Englishman’s dream. It seems that
the principal reason for Babbage’s failure was the
prohibitive cost, though another cause is found
in his new design to build an “analytical engine.”

The analytical engine, in its design and plan-
ning, was a forerunner of the modern computer.
Based on Joseph-Marie Jacquard’s punch cards
used in weaving machinery, Babbage’s machine
would be run by inserting cards with small holes;
springy wires would move through the holes to
operate certain levers. This concept described a
machine of great versatility and power. The mill,
the center of the machine, was to possess 1,000
columns with 50 geared wheels apiece: up to
1,000 50-digit numbers could be operated on
with one of the four main arithmetic operations.
Data, operation, and function cards could be in-
serted to provide information on variables, pro-
grams, and constants to the mill. The output
would be printed, and another part of the ma-
chine would check for errors, store information,
and make decisions. This corresponds to the
memory and logic flow components of a modern
computer. However, in one important aspect
Babbage’s analytical engine differs from the digital
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computer: His was based on a decimal system,
whereas computers operate on a binary system.

Although the plans for this machine im-
pressed all who viewed them, Babbage did not
receive any financial support for its construction.
He died on October 18, 1871, in London, with-
out seeing the completion of his mechanistic
projects. However, his son later built a small mill
and printer, which is kept in the Science
Museum of London.

Babbage was a highly creative mathemati-
cian whose ideas foreshadowed the major thrust
of computer science in the second half of the
20th century. His work in pure mathematics has
had little impact on successive generations of
mathematicians, but his ideas on the analytical
engine would be revisited over the next century,
culminating in the design of early computers in

the mid-1900s.
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In 13th-century Europe, there was no pursuit of
science as there is today: the medieval church,

Roger Bacon proposed that mathematical knowledge
should be arrived at through reason rather than
authority. (Courtesy of the National Library of Medicine)

having gone so far as to make reason irrelevant
in matters of faith and knowledge, substituting
the unmitigated authority of papal decree and
canon law, reigned over a stifling intellectual cli-
mate. However, the use of reason and empiricism,
when coupled with the knowledge of a rational
God’s creation of a rational world, would prove
to be the epistemology of science for the next
several centuries, which resulted in numerous
discoveries. Roger Bacon was an early figure in
this paradigm shift, vigorously acting as a key
proponent of the utility of mathematics and
logic within the spheres of human knowledge.
Natural philosophy, which in his view was sub-
servient to theology, could serve toward the ad-
vancement of the human task generally speaking
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(the dominion and ordering of the Earth and,
more specifically, the development of the
church). Later scientific endeavor, starting in
the 18th and 19th centuries, would abandon
these theistic roots in favor of reason as the sole
authority in man’s pedagogical quest; but Bacon’s
promotion of the use of mathematics in part-
nership with faith in God was to remain the
guiding epistemology for several centuries.

Bacon’s birth has been calculated to be ap-
proximately 1214, though scholars differ on this
detail since there is no exact record. This
Englishman came of a family that had suffered
persecution from the baronial party, due to their
failed support of Henry III. His early instruction
in the Latin classics, including Seneca and
Cicero, led to his lifelong fascination with nat-
ural philosophy and mathematics, further incul-
cated at Oxford. After receiving his M.A. degree
in about 1240, he apparently lectured in the
Faculty of the Arts at Paris from 1241 to 1246.
He discussed various topics from Aristotle’s
works, and he was a vehement advocate of com-
plete instruction in foreign languages. Bacon un-
derwent a drastic change in his conception of
knowledge after reading the works of Robert
Grosseteste (a leading philosopher and mathe-
matician of the region) when he returned to
Oxford in 1247; he invested considerable sums
of money for experimental equipment, instru-
ments, and books, and sought out acquaintance
with various learned persons. Under Grosseteste’s
influence, Bacon developed the belief that lan-
guages, optics, and mathematics were the most
important scientific subjects, a view he main-
tained his whole life.

By 1251 he had returned to Paris, and he en-
tered the Franciscan order in 1257. The chapter
of Narbonne was presided over by Bonaventure,
who was opposed to inquiries not directly related
to theology; he disagreed sharply with Bacon on
the topics of alchemy and astrology, which he
viewed as a complete waste of time. Bacon, on
the other hand, while agreeing that they had no

discernible or predictable impact on the fates of
individuals, thought it possible for the stars to ex-
ert a generic influence over the affairs of the
world; he also experimented in alchemy, the
quest to transmute lead into gold. Due to these
political difficulties, Bacon made various propos-
als on education and science to Cardinal Guy de
Folques, who was soon elected Pope Clement IV
in 1265. As pope he formally requested Bacon to
submit his philosophical writings, and the
Englishman soon produced three famous works:
Opus maius (Great work), Opus minus (Smaller
work), and Opus tertium (Third work) within the
next few years.

The Opus maius treated his opinions on nat-
ural philosophy and educational reform. Authority
and custom were identified as impediments to
learning; although Bacon submitted to the au-
thority of the Holy Scriptures, he believed the
wisdom contained therein needed to be devel-
oped by reason, rightly informed by faith. In this
one sees some early seeds of Protestant thought
about the proper balance of authority and rea-
son. However, Bacon was not a believer in pure
deduction detached from the observed world,
like the Greek philosophers and mathematicians
of antiquity; rather, he argued for requisition of
experience. Information obtained through the
exterior senses could be measured and quantified
through instruments and experimental devices
and analyzed through the implementation of
mathematics. By studying the natural world, it
was possible, Bacon argued, to arrive at some un-
derstanding of the Creator of that natural world.
Thus, all of human knowledge was conceived in
a harmonious unity, guided and led by theology
as the regent of science. Hence it was necessary
to deepen the understanding of languages, math-
ematics, optics, experimental science, alchemy,
metaphysics, and moral philosophy.

Bacon’s view on authority was somewhat
progressive: without moderation, authority
would prevent the plowing of intellectual fur-
rows given provenience by rational disputation.



20 Bacon, Roger

However, it must not be thought that a prede-
cessor of nihilism, moral relativism, or other an-
tiauthoritative systems can be found in Bacon—
he believed in one truth (Christianity), but sought
to use reason as a fit tool for advancing the inter-
ests of the kingdom of God and the civilization of
man. The heathen should be converted by argu-
ment and persuasion, never by force.

Mathematics was to play an important role
in Bacon’s entire system. Of course, he under-
stood the term in a broad sense, as inclusive of
astronomy and astrology, optics, physical causa-
tion, and calendar reform, with even applications
to purely religious matters. His work in optics re-
lied heavily on geometry, and stood on the shoul-
ders of EUCLID OF ALEXANDRIA, CLAUDIUS
PTOLEMY, and ABU ALI AL-HAYTHAM, as well as
Grosseteste. Along with Grosseteste, he advo-
cated the use of lenses for incendiary and visual
purposes. Bacon’s ideas on refraction and reflec-
tion constituted a wholly new law of nature. His
work on experimental science laid down three
main goals: to certify deductive reasoning from
other subjects, such as mathematics, by experi-
mental observation; to add new knowledge not
attainable by deduction; and to probe the secrets
of nature through new sciences. The last pre-
rogative can be seen as an effort toward attain-
ing practical magic—the requisitioning of nature
toward spectacular and utilitarian ends.

Bacon lists four realms of mathematical ac-
tivity: human business, divine affairs (such as
chronology, arithmetic, music), ecclesiastical tasks
(such as the certification of faith and repair of the
calendar), and state works (including astrology
and geography). Mathematics, the “alphabet of
philosophy,” had no limits to its range of applica-
bility, although experience was still necessary in
Bacon’s epistemology. Despite his glowing praise
of “the door and key of the sciences,” it appears
that Bacon’s facility in mathematics was not great.
Although he has some original results in engi-
neering, optics, and astronomy, he does not fur-
nish any proofs or theorems of his own devising.

He also made some contributions in the ar-
eas of geography and calendar reform. He stated
the possibility of journeying from Spain to India,
which may have influenced Columbus centuries
later. Bacon’s figures on the radius of the Earth
and ratio of land and sea were fairly accurate,
but based on a careful selection of ancient au-
thorities. His map of the known world, now lost,
seems to have included lines of latitude and lon-
gitude, with the positions of famous towns and
cities. Bacon discussed the errors of the Julian
calendar with great perspicuity, and recom-
mended the removal of one day in 125 years,
similar to the Gregorian system.

Certainly, after his death, Bacon had many
admirers and followers in the subsequent cen-
turies. He continued writing various communi-
cations on his scientific theories, but sometime
after 1277 he was condemned and imprisoned
in Paris by his own Franciscan order, possibly
for violating a censure. His last known writing
was published in 1292, and he died sometime
afterward.

Bacon contributed generally to the advance
of reason and a rational approach to knowledge
in Europe; his efforts influenced not only the
course of mathematics but also the history of sci-
ence more generally. The writings of Bacon
would be familiar to later generations of math-
ematicians working in the early 17th century.
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%< Baire, René-Louis
(1874-1932)
French
Analysis

In the late 19th century some of the ideas on
the limits of sequences of functions were still
vague and ill formulated. René Baire greatly
advanced the theory of functions by consider-
ing issues of continuity and limit; his efforts
helped to solidify the intuitive notions then in
circulation.

René-Louis Baire was born in Paris on
January 21, 1874, one of three children in a mid-
dle-class family. His parents endured hardship in
order to send Baire to school, but he won a
scholarship in 1886 that allowed him to enter
the Lycée Lakanal. He completed his studies
with high marks and entered the Ecole Normale
Supérieure in 1892.

During his next three years, Baire became
one of the leading students in mathematics,
earning first place in his written examination.
He was a quiet, introspective young man of
delicate health, which would plague him
throughout his life. In the course of his oral
presentation of exponential functions, Baire
realized that the demonstration of continuity
that he had learned was insufficient; this realiza-
tion led him to study the continuity of functions
more intensely and to investigate the general na-
ture of functions.

In 1899 Baire defended his doctoral the-
sis, which was concerned with the properties
of limits of sequences of continuous functions.
He embarked on a teaching career at local ly-
cées, but found the schedule too demanding;
eventually he obtained an appointment as pro-
fessor of analysis at the Faculty of Science in
Dijon in 1905. Meanwhile, Baire had already
written some papers on discontinuities of func-
tions, and had also suffered a serious illness in-
volving the constriction of his esophagus. In 1908
he completed a major treatise on mathematical

analysis that breathed new life into that sub-
ject. From 1909 to 1914 his health was in
continual decline, and Baire struggled to ful-
fill his teaching duties; in 1914 he obtained a
leave of absence and departed for Lausanne.
Unfortunately, the eruption of war prevented
his return, and he was forced to remain there
in difficult financial circumstances for the next
four years.

His mathematical contributions were
mainly focused around the analysis of functions.
Baire developed the concept of semicontinuity,
and perceived that limits and continuity of
functions had to be treated more carefully than
they had been. His use of the transfinite num-
ber exercised great influence on the French
school of mathematics over the next several
decades. Baire’s most lasting contributions are
concerned with the limits of continuous func-
tions, which he divided into various categories.
He provided the proper framework for studying
the theory of functions of a real variable; pre-
viously, interest was peripheral, as mathemati-
cians were only interested in real functions that
came up in the course of some other investiga-
tion. Thus, Baire effected a reorientation of
thought.

Baire’s illness made him incapable of re-
suming his grand project, and after the war he
focused instead on calendar reform. He later re-
ceived the ribbon of the Legion of Honor and
was elected to the Academy of Sciences; sadly,
his last years were characterized by pain and fi-
nancial struggles. As a result, he was able to
devote only limited amounts of time to math-
ematical research. He died in Chambéry,
France, on July 5, 1932.

Baire’s work played an important role in the
history of modern mathematics, as it represents
a significant step in the maturation of thought.
His ideas were highly regarded by EMILE BOREL
and HENRI LEBESGUE, and exerted much influ-
ence on subsequent French and foreign mathe-
maticians.



