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 Preface     

There are many books on computers, networks, and software engineering but none 
that integrate the three with applications . Integration is important because, increas-
ingly, software dominates the performance, reliability, maintainability, and avail-
ability of complex computer and systems. Books on software engineering typically 
portray software as if it exists in a vacuum with no relationship to the wider system. 
This is wrong because a system is more than software. It is comprised of people, 
organizations, processes, hardware, and software. All of these components must be 
considered in an integrative fashion when designing systems. On the other hand, 
books on computers and networks do not demonstrate a deep understanding of the 
intricacies of developing software. In this book you will learn, for example, how to 
quantitatively  analyze the performance, reliability, maintainability, and availability 
of computers, networks, and software in relation to the total system . Furthermore, 
you will learn how to evaluate and mitigate the risk of deploying integrated systems. 
You will learn how to apply many models dealing with the optimization of systems. 
Numerous quantitative examples are provided to help you understand and interpret 
model results. 

 The following topics are covered:

    •      application of quantitative models to solving computer, network, and software 
engineering problems  

   •      mathematical and statistical models of reliability, maintainability, and 
availability

   •      statistical process and product control  

   •      fault tree analysis  

   •      risk management  

   •      software metrics  

   •      resource allocation and assignment  

   •      software reliability models and tools  

   •      computer security  

   •      optimal network routing    

 Solutions to problems that consider only a single facet of a problem are doomed to 
be suboptimal. Because of its breadth, this book provides a new perspective for 
computer, network, and software engineers to consider the big picture in order to 
develop optimal solutions. 
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 This book can be used as a text, handbook, and reference by advanced under-
graduates and fi rst - year graduate students in academia as well as by computer, 
network, and software engineer practitioners in the worldwide industry. 

   N orman  F. S chneidewind
Professor Emeritus of Information Sciences
Department of Information Sciences 
and the Software Engineering Group
Naval Postgraduate School
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Chapter 1

Digital Logic and 
Microprocessor Design 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
Sons, Inc.

T his chapter focuses on the fundamentals of digital logic and design, with numerous 
examples from both computer hardware design and  “ everyday life ”  events to demonstrate 
that digital logic is not confi ned to designing computers. My objective is to equip the engineer 
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer 
systems with the hardware design principles. Numerous design examples and solved problems 
are provided to support learning objectives.    

MICROPROCESSOR DESIGN 

Functions

 Using its  arithmetic logic unit ( ALU ), a microprocessor can perform mathematical 
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that 
can perform extremely sophisticated operations on large variable - length numbers. 
In addition, a microprocessor can perform the following functions:

   Move data from one memory location to another.  

  Make decisions and jump to a new set of computer program instructions based 
on those decisions.  

  Use an  RD  ( read ) and  WR  ( write ) line to tell the memory whether it wants to 
read from or write to the addressed location.  

  Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor. 
For example, when numbers are added by the microprocessor, which you 
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4 Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each 
binary bit addition to ultimately form a decimal result.  

  Uses a reset line to reset the program counter to zero and restart execution.     

Components

 Microprocessor components are the building blocks of modern computers. These 
components are the following:

•       ALU.  Consists of accumulators, registers, and control unit. 

•      The ALU executes instructions and manipulates data.  

•      An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers, 
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.  

•      An 8 - bit ALU would have to execute four instructions to add two 32 - bit 
numbers (four add instructions, each of which adds 8 - bit numbers), whereas 
a 32 - bit ALU can do it in one instruction.    

•       Accumulator.  Holds data and instructions for processing by the ALU.  

•       Register.  Temporary storage of instructions and data. 

•        Program Counter    (PC).  Contains the address of next instruction to be 
executed

•        Instruction Register    (IR).  Holds address of current instruction being 
executed

•       General Registers.  Holds operator (e.g., code for add instruction), operands 
(e.g., numbers to be added), and data while an instruction is executed    

•       Stack.  Temporary storage of instructions and data, usually on a last in, fi rst 
out (LIFO) basis. Also called push - down stack.  

•       Control Unit.  Fetches and decodes instructions, generates signals for the ALU 
to execute instructions  

•       Busses

•       Address Bus.  Path over which addresses fl ow for directing memory and 
 input/output  ( I/O ) data transfers. An address bus may be 8, 16, or 32   bits 
wide that sends an address to memory or I/O for accessing memory or I/O.  

•       Data Bus.  Transfers data. A data bus may be 8, 16, or 32   bits wide that can 
send data to memory or I/O and receive data from memory or I/O. The 
number of address bus lines determine the amount of addressable memory 
(n lines    =    2 n  addressable words).  

•       Control Bus.  Communicates control and status information.    

•       Chip.  A chip is also called an integrated circuit. Generally it is a small, thin 
piece of silicon onto which the transistors making up the microprocessor have 
been etched. A chip might be as large as an inch on a side and can contain 
tens of millions of transistors. Simpler processors might consist of a few 
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thousand transistors etched onto a chip just a few millimeters square. Microns 
are the width of the smallest wire on the chip. For comparison, a human hair 
is 100    μ m thick. As the feature size on the chip goes down, the number of 
transistors rises.     

Characteristics

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding 
paragraphs.

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor). 

 A crystal - controlled clock sequences the operations of a microprocessor (e.g., 
the sequence of computer program instruction execution) by generating CPs. Clock 
speed is specifi ed in cycles per second, where 1   MHz is equal to 1 million cycles 
per second. Clock speed is the maximum speed of the chip. 

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code, 
fetch operands from memory, execute the instruction, and store the result in memory. 
In addition to clock speed, an important performance metric is the number of 
fl oating - point operations per second or fl ops.

Complex instruction set computing    (CISC).  A single instruction can perform 
several operations. This design simplifi es programming because, for example, 
a single instruction can fetch instruction from memory, decode the operation 
code, fetch operands from memory, execute the instruction, and store the 
result in memory. However, the downside is the relatively slow speed of the 
computer  [RAF05] .  

Reduced instruction set computing    (RISC).  Several operations are required to 
execute a single instruction. This design provides high speed, for example, 
well suited to real - time applications that must meet deadlines, but at the 
expense of relatively complex programming.     

Performance

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven 
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster 
the internal clock, the more instructions can be processed per unit of time. For the 
microprocessors in laptop and desktop computers, clock speeds are usually greater 
than 100   MHz. The fastest microprocessors can run at a speed of 2   GHz. From a 
user standpoint, the most important performance metric is program execution time, 
defi ned as  [HAR07] :
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Program execution time Number of instructions in program= ( )

∗∗ ∗( ) ( ).Clock cycles per instruction Time per clock cycle

 Another measure of performance is the number of instructions that can be processed 
per second, referred to as MIPS, for million instructions per second. The MIPS rating 
of a microprocessor depends on both the clock speed and the number of instructions 
that can be executed per clock cycle. Simple microprocessors can execute a maximum 
of one instruction per clock cycle. Advanced microprocessors can execute up to six 
or eight instructions per clock cycle. The relationship between clock speed and MIPS 
is not straightforward, however, because some instructions may take more than one 
clock cycle to execute, depending on the program. The product of clock speed and 
the number of instructions that can be executed per cycle may be greater than MIPS. 
The maximum clock speed is a function of the manufacturing process and delays 
within the chip. MIPS is proportional to the clock speed and inversely proportional 
to the number of clock cycles per instruction. 

 Another indication of microprocessor speed is the word length, as measured by 
the number of bits of information that can be transferred simultaneously. Long words 
allow the microprocessor to handle data and perform complex tasks more effi ciently. 
The number of bits per word has been steadily increasing with the growth of circuit 
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common. 
Some personal computers use 32 - bit microprocessors. More powerful computers use 
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple 
embedded applications, such as microwave ovens, electric shavers, and televisions. 
Figure  1.1  shows the microprocessor architecture.   

Pipeline Systems 

 An important aid to performance is the pipeline system. The purpose of a pipeline 
system is to reduce delay caused by the computer processor having to wait for 
instructions to complete. With a pipeline design, the processor begins the execution 
of the next instruction while the current instruction is executing. Thus, various 
phases of instruction execution are overlapped. The concept is to keep the pipeline 
full, with as many execution sequences as possible. For example, due to overlapped 
instruction execution, each instruction overlaps during (n    −    1) clock cycles, and each 
of m    =    4 instructions requires one clock cycle, yielding (n    −    1)    +    m    =    7 clock 
cycles, total, as shown in Figure  1.2 .

Problem:  How is the  increase in speed , obtained by a pipelined system over a 
conventional system, computed?    

Answer:  Using Figure  1.2  as an example, the increase is computed as follows:    

 The number of clock cycles required in conventional system is mn    =    4    *    4    =    16 in 
the example of Figure  1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

    mn n m− − + = − =(( ) ) ,1 16 7 9
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Figure 1.1     Microprocessor architecture.  
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  and the  increase in speed  (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

    ( ) / (( ) ) / ((( ) / ) ) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase. 

 The pipeline  throughput  is defi ned as the  number of instructions , m, per  total
clock cycle time  required to process m instructions:
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m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −( )
,

  where T is clock cycle time per instruction.

Problem:  Compute the throughput of the pipeline microprocessor in Figure  1.2 .  

Answer:  For a clock speed of 10   Mhz (10 7  clock cycles per second), T    =    1/10 7

seconds, the throughput is: 

     m m n T MIPS/ (( ) ) / (( )( / )) ( )( ) / . .+ − = = =1 4 7 1 107 4 107 7 5 71

Pipeline effi ciency  is computed as: speed increase/maximum speed increase (n    =    4 
clock cycles per instruction)    =    2.286/4    =    0.5715.  

Pipeline System Delay 

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then 

•      Finish the earlier instructions on schedule and  

•      Delay the later instructions  

•      This is called stalling the pipeline    

Structural hazard s are pipeline hardware delays.

Example:  Memory does not respond to a request as fast as it is expected.    

Data hazards  arise when data are not ready in a pipeline at the time they are needed.

Figure 1.2     Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one 
clock cycle; (n    −    1)    +    m    =    7 clock cycles (each instruction overlaps for [n    −    1] clock cycles).  
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Example:  An instruction needs data in a register that a previous instruction is 
still modifying.    

Control hazards  arise when the central processing unit (CPU) needs to manage a 
pipeline but instead must increment the program counter.

Example:  Nonpipelined conditional branch instruction jumps to a pipelined 
instruction.

Problem:  Delay in a pipelined operation is illustrated in this problem that 
compares the clock cycle delay for nonjump instructions with that of jump 
instructions.    

 If a jump instruction is executed in the pipelined CPU in Figure  1.2 , what is the 
clock cycle delay?

Answer:  Since the target of the jump instruction (another instruction) cannot 
be decoded (i.e., program counter updated) until the jump instruction is 
executed, there is a delay of three clock cycles.  

Problem:  What cam be done in a pipeline system to maintain performance 
when a structural hazard  occurs?  

Answer:  More resources can be employed, if available, or the pipeline can be 
stalled (i.e., no instructions executed until needed hardware is available).  

Problem:  Is the microprocessor architecture in Figure  1.1  a pipeline computer?  

Answer:  No, it is not because only one instruction can be executed at a time.  

Problem:  What determines the clock cycle frequency of a pipeline system?  

Answer:  The clock cycle frequency of a  pipeline system  is governed by the 
pipeline  with the slowest processing time. For example, whichever pipeline 
queue in Figure  1.2  experiences the slowest processing determines clock 
cycle frequency.      

Operating System 

 The operating system contains the software necessary to manage the resources of a 
computer system. An example is a signal called an interrupt that is used to indicate 
to the microprocessor that an I/O device needs attention (i.e., data input or data 
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure  1.1 . In addition to managing resources, the 
operating system is responsible for allocating resources, for example, allocating 
memory to the application program, as depicted in Figure  1.1 .  

Memory

 Because computer performance depends on the characteristics of memory systems 
in addition to the microprocessor architecture, it is important to consider the former 
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 [HAR07] . Two important types of memory systems are main memory (random 
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory 
can be divided between a relatively slow RAM for program and data access and a 
fast cache memory for accessing recently used instructions and data. In addition, 
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk 
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called  direct 
memory access  ( DMA ), which allows I/O devices to communicate directly with 
memory rather than using intermediate devices (such as data buffers in Fig.  1.1 ). 

RAM

 RAM contains bytes of information that the microprocessor can read or write, 
depending on whether the RD or WR line is activated. One problem with RAM 
chips is that they are volatile; the RAM contents are lost once the power goes off. 
That is why the microprocessor needs read - only memory (ROM).  

ROM

 All microprocessors contain ROM. A ROM chip is programmed with a permanent 
collection of preset bytes. The address bus tells the ROM chip which byte to read and 
place on the data bus. The RD line signal causes the ROM chip to transfer the selected 
byte to the data bus. On a personal computer, the program in the ROM is called the 
 BIOS  ( basic input/output system ). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and 
then control is transferred to the hard disk to fetch the boot sector. The boot sector is 
another small program that the BIOS stores in RAM after reading it from the disk. 
The microprocessor then begins executing the boot sector ’ s instructions from RAM. 
The boot sector program will tell the microprocessor to fetch more instructions from 
the hard disk into RAM, which the microprocessor then executes, and so on. This is 
how the microprocessor loads and executes the entire operating system.  

Read/Write ( R/W) Control Line 

 This single wire is driven by the microprocessor to control memory functions. If the 
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor 
performs a write operation. The relationship between logic level and voltage level 
can vary, depending on the implementation. For example, a logical 0 corresponds to 
a voltage of 0   V, and a logical 1 corresponds to a voltage of 5   V. Figure  1.3  is a block 
diagram of the microprocessor and memory, showing the R/W control line.    

Address Bus 

 These wires are controlled by the microprocessor to select a particular location in 
memory for reading or writing. The microprocessor in Figure  1.3  uses a memory 
chip that has 15 address wires.
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Problem:  How many locations can be addressed in Figure  1.3 ?  

Answer:  Since each wire has two states (it can be a digital 1 or a 0), 2 15     =    32,768 
locations are possible. Thus, the system is said to have 32K of memory 
(1K    =    1024   bytes).     

Data Bus 

 These wires are used to pass data between the microprocessor and the memory. 
When data are written to the memory, the microprocessor drives the data bus; when 
data are read from the memory, memory drives the bus. In the example, in Figure 
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8  or 256 
different binary values per transfer. The data size of 8   bits is commonly referred to 
as a byte. A data size of 4   bits is frequently referred to as a nibble.  

Memory Enable Control Line 

 This wire, called the Enable line, connects to the enable circuitry of the memory in 
Figure  1.3 . When the memory is enabled, it performs either a read or write operation 
as determined by the status of the R/W line.  

Memory System Performance 

 Memory system performance is computed by considering hit and miss rates and the 
order of accessing memory components: cache memory, main memory, and hard 
disk. These rates are related to whether the instructions or data that are required by 
a program are available, fi rst, in the cache memory, or second, in the main memory. 
If the instructions or data are in the cache, the access is scored as a cache hit; 
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data 

Figure 1.3     Diagram of microprocessor and memory.  
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are not in the cache but are in main memory, the access is scored as a main memory 
hit; otherwise, the access is scored as a main memory miss because the instructions 
or data are only available on the hard disk  [HAR07] . Thus, hit and miss rates are 
computed as follows:

    Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,

    Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,

    Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,

    Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,

    

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +( rry hits

Number of main memory misses).+
   

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing 
computation:

    Hard disk access rate HDAR HAD Total number of memory ac( ) /= ccesses.

Problem:  For example, consider the following case: 

   4000 total number of memory accesses  

  1200 cache accesses are hits and 800 are misses  

  Of the 800 cache misses that require access to the main memory, 200 are hits 
and 600 are misses  

  Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.    

Answer:  CHR    =    1200/4000    =    30% 

   CMR    =    800/4000    =    20%  

  MMHR    =    200/4000    =    5%  

  MMMR    =    600/4000    =    1%  

  HAD    =    4000    −    (1200    +    200    +    600)    =    2000  

  HDAR    =    1200/4000    =    50%      

 Another memory performance metric is  average access time  ( AAT ), which is com-
puted as follows:

    
AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

( )

( ) ++ ∗HDAR hard disk access time( ).
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Problem:    For the following typical access times: cache    =    2   ns, main memory    =    
60   ns, and hard disk    =    35   ms, and using the above hit and miss access rates, 
compute the AAT.  

Answer:  AAT    =    (0.30)(2)    +    (0.04)(60)    +    (0.50)(35    *    10 6 ) ns    =    20.50    *    10 6    ns 
(of course, hard disk access time dominates).      

Multiplexing Data and Address Signals 

 On the Motorola 68HC11 microprocessor, in Figure  1.4 , the 8 - bit address/data bus 
takes turns acting as an address bus and a data bus. When a memory location is 
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting 
the 8 lower - order bits of the address. Then the bus functions as a data bus, either 
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data 
bus. The support needed by the memory is provided by an 8 - bit latch (a device that 
can store an address), using a multiplexed address/data bus. This chip (HC373) 
performs the function of latching the lower 8 address bits, when combined with the 
upper 7 address bits from the microprocessor, will provide the full 15 - bit address 
for reading or writing data.   

 Figure  1.4  shows how the latch is wired. The upper 7 address bits run directly 
from the microprocessor to the memory. The lower 8  address bits  are multiplexed 
with 8 data bits . When an  address  appears on the wires AD: 07, the latch connects 
the address bits of the microprocessor to the memory. On the other hand, when 
data  appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the 

Figure 1.4     Block diagram of microprocessor and memory with latch.  
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microprocessor, tells the latch when to obtain the address bits from the address/data 
bus. When the full 15 - bit address is available to the memory (upper 7   bits direct 
from the microprocessor (wires A8: 14) and lower 8   bits from the latch (wires AD: 
07), the read or write access can occur. Because the address/data bus is also wired 
directly to the memory, data can fl ow in either direction between the memory and 
the microprocessor. The entire process is managed by the microprocessor. The 
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to 
make sure these operations happen in the correct sequence and within the timing 
capacities of the microprocessor hardware.  

Memory Mapping the RAM

 Memory mapping refers to allocating blocks of memory to different functions, such 
as the operating system and the application program. If a microprocessor has 15 
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped. 
This address space would be used by the 32K memory chip in Figure  1.5 . The 
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s 
A15 (the highest order address bit) is logic 1, the high - order address bit is selected. 
The other 15 address bits (A0 through A14) determine the address within that 32K 
block. If A15 is logic 0, the 32K block is not selected.   

 A NAND gate (actually a portion of a programmable logic device called a PAL) 
is used to enable the memory when A15 and the E Clock equal 1 in Figure  1.5 . (See 
the “ Digital Logic ”  section below for the explanation of NAND and other gates). 

 The E Clock controls the timing of the chip enable line. Some memory chips 
use an active low (sometimes called “ active false ” ) signal to enable inputs, meaning 
that they are enabled when the enable input is 0. The method for denoting an input 
that is active low (i.e., 0) is shown in Figure  1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the 
signal, CE, is prefi xed with a  ∼  symbol.  

Interrupt Handling 

 The microprocessor has a bank of interrupt vectors, as shown in Figure  1.5 , which 
are hardware - defi ned locations in the memory address space where the microproces-

Figure 1.5     Enabling the memory.  
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sor expects to fi nd pointers to interrupt handling routines, for processing input and 
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset, 
it fi nds the reset vector to determine where it should begin running a program. These 
vectors are located in the address space of the memory.   

DIGITAL LOGIC 

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where 
the binary value 0 is considered “ low ”  (e.g., low voltage) and the binary value 1 is 
considered “ high ”  (e.g., high voltage). While digital logic is used in the design of 
microprocessors, “ everyday ”  examples are provided to show that the logic opera-
tions are not restricted to microprocessors. 

NOT : represented in Table  1.1  and implemented with an inverter in Figure  1.6 .

Application:  The application is to complement the input A, producing the 
output   A.      

Microprocessor example:  the binary bit input was caused by an arithmetic 
overfl ow condition, so it is ignored and  not  used in the computation.  

Everyday example:  if we are to leave on an automobile trip, where A    =    1 
represents leaving at 1000,   A = 0 represents all times  not  equal to 1000.    

OR : represented in Table  1.2  and implemented with OR gate in Figure  1.6 .

Application:  The application is to produce a 1 output if  any  or  both  of the inputs 
are 1.    

Microprocessor example:  the inputs are binary bits from memory stick or hard 
disk, so the microprocessor can accept either  or  both  to perform a computa-
tion, depending on the current computer program instruction.  

Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house or  an automobile  or  both.    

AND : represented n Table  1.3  and implemented with an AND gate in Figure  1.6 .

Application:  The application is to produce a 1 output if  all  inputs are 1.    

Table 1.1    NOT Truth Table 

   Input     Output  

  A  A
  0    1  
  1    0  
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Table 1.2    OR Truth Table 

   Input     Input     Output  

  A    B    Z    =    A    +    B  
  0    0    0  
  0    1    1  
  1    0    1  
  1    1    1  

Figure 1.6     Logic operations.  
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Table 1.3    AND Truth Table 

   Input     Input     Output  

  A    B    Z    =    AB  
  0    0    0  
  0    1    0  
  1    0    0  
  1    1    1  

Table 1.4    NOR Truth Table 

   Input     Input     Output  

  A    B  Z A B= +
  0    0    1  
  0    1    0  
  1    0    0  
  1    1    0  

Microprocessor example:  the microprocessor uses a signal Z    =    1 to tell it that 
an interrupt has occurred on input line A  and  signifying that data input occurs 
on B, which the microprocessor will transfer to its memory.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has both  a gas 
station and  a restaurant.    

NOR : represented in Table  1.4  and implemented with NOR gate in Figure  1.6 .

Application:  The application is to produce a 1 output if all inputs are 0.    

Microprocessor example:  the microprocessor Z    =    1 output is recognized as 
interrupt code AB    =    00.  

Everyday example:  if A    =    0 represents the decision to  not  purchase a home 
and B    =    0 represents the decision  not  to purchase an automobile, then Z    =    1 
represents the decision to neither  purchase a home  nor  purchase an 
automobile.    

NAND : represented in Table  1.5  and implemented with NAND gate in Figure  1.6 .

Table 1.5    NAND Truth Table 

   Input     Input     Output  

  A    B  Z AB=
  0    0    1  
  0    1    1  
  1    0    1  
  1    1    0  
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Application:  The application is to produce a 1 output if all inputs are  not  1.    

Microprocessor example:  the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when 
Z    =    1 signals that 0s occur on  either or both  of two input channels.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has only a gas 
station, or has only a restaurant, or has neither (i.e., rest stop).    

Exclusive OR (XOR) : represented in Table  1.6  and implemented with EXCLUSIVE 
OR gate in Figure  1.6 . The fi gure also shows how the gate can be implemented, 
using AND and OR gates.

Application:  The application is to produce a 1 output if  any  of the inputs is 1, 
but not all  inputs are 1, and  not all  inputs are 0.    

Microprocessor example:  the main microprocessor receives a signal Z    =    1 
from the output of the I/O microprocessor that a binary bit A    =    1 from a 
memory stick or  B    =    1 from a hard disk, and is ready for input, but these 
inputs are not concurrent .  

Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house or  an automobile, but  not both at the same 
time .    

Exclusive NOR (XNOR) : represented in Table  1.7  and implemented with XNOR gate 
in Figure  1.6 . The  NOR  gate is the negation of the  XOR  gate from Table  1.6 , as 
indicated in Table  1.7 .

Table 1.6    EXCLUSIVE OR Truth Table 

   Input     Input     Output  

  A    B  Z AB AB= +
  0    0    0  
  0    1    1  
  1    0    1  
  1    1    0  

Table 1.7    EXCLUSIVE NOR (XNOR) Truth Table 

   Input     Input     Output  

  A    B  Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +( )( ) ( )( )
  0    0    1  
  0    1    0  
  1    0    0  
  1    1    1  
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Application:  The application is to produce a 1 output if all inputs are 0  or  all 
inputs are 1.    

Microprocessor example:  Two hard drives are identifi ed as A    =    0 and A    =    1; 
two fl ash memories are identifi ed as B    =    0, and B    =    1. The microprocessor 
is programmed to input data from a hard drive and a fl ash memory  concur-
rently . Therefore, it reads A    =    0  and  B    =    0  or  A    =    1  and  B    =    1.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has neither  a 
gas station nor  a restaurant (i.e., rest stop)  or  has  both  a gas station and 
restaurant (i.e., get gas and eat).    

De Morgan ’ s theorem   [GRE80]  is used to simplify complex logic equations and the 
resultant digital logic. The theorem is used to simplify relatively simple expressions, 
as contrasted with Karnaugh maps (K - maps), described in the next section. The 
application of this theorem is shown in the following example:

    Theorem: A B AB and AB A B.+ = = +    

 Suppose it is required to simplify   F AB AB= (( )( )).
 Applying the theorem:

    

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,( )( ) ( )( )

( )1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =( )( ( ) ( )

   

 Then, use Table  1.8  to demonstrate the equivalence between   (( )( ))AB AB  and AB.    

  K -MAPS

 A K - map in Table  1.9  is used to minimize a complex Boolean expression  [RAF05] . 
Each square of a K - map represents a minterm (i.e., product terms). The process 
proceeds by listing the binary equivalents of the terms A and BC on the axes of 
Table  1.9 , ordering them so that there is only a 1 - bit difference between adjacent 
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed 

Table 1.8    Truth Table to Demonstrate Equivalence between F and AB 

   A     B  AB ABAB        F AB AB= (( )( ))    AB

  0    0    1    1    0    0  
  0    1    1    1    0    0  
  1    0    1    1    0    0  
  1    1    0    0    1    1  
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 In the K - map,   B is common to the enclosed minterms. Therefore,   F B= . Table  1.10  
demonstrates this result. The considerable reduction from the original function 
would result in signifi cant savings in circuitry to implement the function.   

Prime Implicant 

 A prime implicant is the  product term  obtained by enclosing the  maximum  number 
of adjacent cells in a K - map. For example, in the K - map of Table  1.9 ,   F B=  is a 
prime implicant. The prime implicant is only useful for providing a name for the 
maximum enclosure in a K - map.  

Quine–McCluskey Method 

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table  1.11  by minimizing the function 
F A B C A B C A B C A B C= + + + , where these minterms are placed in Table 

Table 1.10    F Function Truth Table 

   A     B     C       F A B C A B C A B C A B C= + + +        F B=

  0    0    0    1    1  
  0    0    1    1    1  
  0    1    0    0    0  
  0    1    1    0    0  
  1    0    0    1    1  
  1    0    1    1    1  
  1    1    0    0    0  
  1    1    1    0    0  

Table 1.9    K - Map for   F ABC ABC ABC ABC= + + +

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product 
terms are summed. Notice what a clever method this is. Minimization is achieved 
by noting the combination of terms that yields the minimum difference! 

Example:  Simplify   F A B C A B C A B C+A B C= + + .      
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 1.11 . This method is used to represent a difference of 1 between two adjacent minterms,
such as   A B C and   A B C, yielding   A B- -= 00 . The symbol  -  is placed where there 
is a difference in minterm bit values, such as between 00 -  and 10 -  in Table  1.11 , 
yielding  - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a 
difference of 1 (00 -  compared with 10 - ), yielding prime implicant   B - -( )0 . The same 
result is obtained as was the case using the K - map in Table  1.9 . Of the two methods, 
the K - map is easier to apply.     

COMBINATIONAL CIRCUITS 

 These are circuits that use logic gates to produce outputs at any time that are only 
dependent on the current  values of the inputs, meaning that it is not necessary to 
use a CP to trigger outputs  [HAR07] . A typical combinational circuit is the adder. 

One-Bit Adder with Carry Out 

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table  1.12 .    

Two-bit Adder with Carry In and CO

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case, 
you need to create a full binary adder. The difference between a full adder and the 

Table 1.11    Quine – McCluskey Method for   F A B C A B C A B C A B C B= + + + =

   Minterm     ABC  

   Difference of 1     Difference of 1  
   Prime 

implicant    Minterms     Minterms     Minterms  

  0  A B C   000    0,1    00 -     0,1,4,5     - 0 -   B
  1  A B C   001  
  4  A B C   100    4,5    10 -   
  5  A B C   101  

Table 1.12    One - Bit Adder Truth Table 

   A     B     Q     CO  

  0    0    0    0  
  0    1    1    0  
  1    0    1    0  
  1    1    0    1  
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1 - bit adder is that a full adder accepts A and B inputs plus a  carry - in  ( CI ) input. 
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for 
a full adder is slightly more complicated than the previous truth table because now 
there are 3 input bits. 

 A combinational circuit minterm is represented by a product in a row of the 
truth table as shown in Table  1.13 , corresponding to a 1 in the Q or CO output 
columns; for example, the fourth row for CO and the second row for Q in Table 
 1.13   [GIB80] . The values of Q and CO product terms are obtained by ORing the 
products in each row of Table  1.13  where Q    =    1 or CO    =    1, and then summing these 
terms, followed by simplifying the expressions, as demonstrated in Table  1.13 . 
Further simplifi cation  may  be possible by using a K - map.   

 As can be seen in Table  1.14 , the adder output Q cannot be simplifi ed by using 
a K - map because there are no adjacent cells. However, simplifi cation is achieved 

Table 1.13    Two - Bit Adder Truth Table 

       Q    =    1    CO    =    1  

   CI     A     B     Q     CO     Minterms     Minterms  

  0    0    0    0    0          
  0    0    1    1    0  CI A B
  0    1    0    1    0  CI A B
  0    1    1    0    1      CI A B
  1    0    0    1    0  CI A B
  1    0    1    0    1      CI A B
  1    1    0    0    1      CI A B
  1    1    1    1    1    CI A B    CI A B  

 Q Product Terms:   CI A B CI A B CI A B CIAB+ + +
Q CI A B  A B CI (A B AB)= + + +( )

  CO Product Terms:   CIA B CI A B  CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +
CO AB CI A B  A B= + +( )

Table 1.14    K - Map for   Q CI A B CI A B CI A B= + + +

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +( ) ( )
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for CO, as shown in Table  1.15 , producing   CO AB CI AB AB= + +( ) . The relevant 
minterm cells in Table  1.15  that comprise the minimized function are outlined in 
red. Minterm logic is called sum of products . The full adder logic that corresponds 
to the minterms in Table  1.13  is shown in Figure  1.7 , showing the adder output Q 
and the CO.       

MULTIPLE OUTPUT COMBINATIONAL CIRCUITS 

 Combinational circuits can have multiple outputs  [RAF05] . Each output is expressed 
as a function of the inputs, as shown in Table  1.16 , where the inputs are  binary - coded 
decimal  ( BCD ) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A 

Figure 1.7     Adder circuit.  
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binary coded decimal converter is an example shown in Figure  1.8 , showing how 
the number 9 can be displayed. The outputs are computer display segment bits a, … , 
g that represent the 1s necessary to generate the display decimal numbers. The code 
converter transforms the BCD numbers 0000, … , 1001 to display segments. The 
converter does not represent decimal numbers greater than 9. The K - maps use  “ don ’ t 
cares”     =    Xs in order to simplify the logic; the  “ don ’ t cares ”  should not be confused 
with the BCD bit    =    X in Table  1.16 . The  “ don ’ t cares ”  are used to advantage in 
forming minterms, as, for example, in Tables  1.17 – 1.23 .     

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to 
the 1s that appear in Table  1.16 . For example, for  segment a  in Table  1.17 , a 1 is 
recorded in the cell WXYZ    =    0000, corresponding to the  1  (bolded) in the  segment
a  column in Table  1.16 . 

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig.  1.8 ). The equations will then be used to design the digital logic 
circuit in Figures  1.9  and  1.10 .   

Figure 1.8     BCD to seven - segment code converter.  
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Table 1.16    Truth Table for Binary - Coded Decimal (BCD) Converter 

   Decimal 
digit

   BCD input bits     Computer display segment output bits  

   W     X     Y     Z     a     b     c     d     e     f     g  

  0    0    0    0    0    1    1    1    1    1    1    0  
  1    0    0    0    1  0    1    1    0    0    0    0  
  2    0    0    1    0    1    1    0   1    1    0    1  
  3    0    0    1    1    1    1    1    1    0    0    1  
  4    0    1    0    0  0    1    1    0    0    1    1  
  5    0    1    0    1    1    0    1    1    0    1    1  
  6    0    1    1    0  0    0    1    1    1    1    1  
  7    0    1    1    1    1    1    0   1    0    0    0  
  8    1    0    0    0    1    1    1    1    1    1    1  
  9    1    0    0    1    1    1    1    0    0    1    1  


