
Computer, Network,
Software, and Hardware
Engineering with
Applications

 IEEE Press
 445 Hoes Lane

 Piscataway, NJ 08854

IEEE Press Editorial Board
 Lajos Hanzo, Editor in Chief

 R. Abhari M. El - Hawary O. P. Malik
 J. Anderson B - M. Haemmerli S. Nahavandi
 G. W. Arnold M. Lanzerotti T. Samad
 F. Canavero D. Jacobson G. Zobrist

 Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers

 Michael R. Lyu
 The Chinese University of Hong Kong

 Daniel Zulaica
 Naval Postgraduate School

Computer, Network,
Software, and Hardware
Engineering with
Applications
Norman F. Schneidewind

A John Wiley & Sons, Inc., Publication

IEEE PRESS

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Schneidewind, Norman.
 Computer, network, software, and hardware engineering with applications /
Norman Schneidewind.
 p. cm.
 Includes index.
 ISBN 978-1-118-03745-4 (cloth)
 1. Computer engineering. 2. Computer networks. 3. Software engineering.
I. Title.
 TK7885.S2564 2012
 005.1–dc23
 2011033591

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

Preface vii

About the Author ix

Part One Computer Engineering

1. Digital Logic and Microprocessor Design 3

2. Case Study in Computer Design 63

3. Analog and Digital Computer Interactions 83

Part Two Network Engineering

4. Integrated Software and Real-Time System Design
with Applications 99

5. Network Systems 125

6. Future Internet Performance Models 143

7. Network Standards 211

8. Network Reliability and Availability Metrics 228

Part Three Software Engineering

9. Programming Languages 263

10. Operating Systems 286

11. Software Reliability and Safety 303

Contents

vi Contents

Part Four Integration of Disciplines

12. Integration of Hardware and Software Reliability 315

Part Five Applications

13. Applying Neural Networks to Software Reliability Assessment 337

14. Web Site Design 354

15. Mobile Device Engineering 377

16. Signal-Driven Software Model for Mobile Devices 396

17. Object-Oriented Analysis and Design Applied to
Mathematical Software 420

18. Tutorial on Hardware and Software Reliability, Maintainability,
and Availability 443

Practice Problems with Solutions 1 466

Practice Problems with Solutions 2 504

Index 556

 Preface

There are many books on computers, networks, and software engineering but none
that integrate the three with applications . Integration is important because, increas-
ingly, software dominates the performance, reliability, maintainability, and avail-
ability of complex computer and systems. Books on software engineering typically
portray software as if it exists in a vacuum with no relationship to the wider system.
This is wrong because a system is more than software. It is comprised of people,
organizations, processes, hardware, and software. All of these components must be
considered in an integrative fashion when designing systems. On the other hand,
books on computers and networks do not demonstrate a deep understanding of the
intricacies of developing software. In this book you will learn, for example, how to
quantitatively analyze the performance, reliability, maintainability, and availability
of computers, networks, and software in relation to the total system . Furthermore,
you will learn how to evaluate and mitigate the risk of deploying integrated systems.
You will learn how to apply many models dealing with the optimization of systems.
Numerous quantitative examples are provided to help you understand and interpret
model results.

 The following topics are covered:

 • application of quantitative models to solving computer, network, and software
engineering problems

 • mathematical and statistical models of reliability, maintainability, and
availability

 • statistical process and product control

 • fault tree analysis

 • risk management

 • software metrics

 • resource allocation and assignment

 • software reliability models and tools

 • computer security

 • optimal network routing

 Solutions to problems that consider only a single facet of a problem are doomed to
be suboptimal. Because of its breadth, this book provides a new perspective for
computer, network, and software engineers to consider the big picture in order to
develop optimal solutions.

vii

viii Preface

 This book can be used as a text, handbook, and reference by advanced under-
graduates and fi rst - year graduate students in academia as well as by computer,
network, and software engineer practitioners in the worldwide industry.

 N orman F. S chneidewind
Professor Emeritus of Information Sciences
Department of Information Sciences
and the Software Engineering Group
Naval Postgraduate School

 About the Author

Dr. Norman F. Schneidewind is Professor Emeritus of Information Sciences in the
Department of Information Sciences and the Software Engineering Group at the
Naval Postgraduate School. He is now doing research and publishing articles and
books in software reliability engineering with his consulting company Computer
Research. Dr. Schneidewind is a Fellow of the Institute of Electrical and Electronics
Engineers (IEEE), elected in 1992 for “ contributions to software measurement
models in reliability and metrics, and for leadership in advancing the fi eld of soft-
ware maintenance. ” In 2001, he received the IEEE “ Reliability Engineer of the Year ”
award from the IEEE Reliability Society. In 2011, he received the “ Outstanding
Engineer ” award from the IEEE Santa Clara Valley Section. In 1993 and 1999, he
received awards for Outstanding Research Achievement by the Naval Postgraduate
School. Dr. Schneidewind was selected for an IEEE - USA Congressional Fellowship
in 2005 and worked with the Committee on Homeland Security and Government
Affairs, United States Senate, focusing on homeland security and cyber security (see
photo below).

 In July 2011, Dr. Schneidewind was named the Outstanding Engineer of Santa
Clara Valley by the IEEE Chapter of Santa Clara Valley. In addition, he has been
named Outstanding Engineer of the San Francisco Bay Area. Furthermore, he has
been named Outstanding Engineer of Region 6 of the IEEE.

 IEEE - USA ’ s four Government Fellows began their Fellowships in January
2005: Randall Brouwer (with Rep. Dana Rohrabacher); Gordon Day (with Sen. Jay
Rockefeller); Norman Schneidewind (on the Senate Homeland Security Committee);
and Nick Zayed (with the State Department Offi ce of Science and Technology
Cooperation).

 Shown at the Jefferson Memorial in Washington, D.C., are, from left to right,
IEEE - USA Government Fellows Norman Schneidewind, Nick Zayed, Randall
Brouwer, and Gordon Day.

ix

x About the Author

 In March 2006, he received the IEEE Computer Society Outstanding Contribu-
tion Award “ for outstanding technical and leadership contributions as the Chair of
the Working Group revising IEEE Standard 982.1, ” signed by Debra Cooper, Presi-
dent of the IEEE.

 He is the developer of the Schneidewind software reliability model that is used
by the National Aeronautics and Space Administration (NASA) to assist in the pre-
diction of software reliability of the Space Shuttle by the Naval Surface Warfare
Center for Tomahawk cruise missile launch and Trident software reliability predic-
tion, and by the Marine Corps Tactical Systems Support Activity for distributed
system software reliability assessment and prediction. This model is one of the
models recommended by the IEEE/AIAA Recommended Practice for Software
Reliability. In addition, the model is implemented in the Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) software reliability
modeling tool.

 Dr. Schneidewind has been interviewed by several organizations regarding his
work in software reliability, including the following: a New York Times article, which
was published on February 7, 2003, about the Space Shuttle software development
process in conjunction with the Columbia tragedy and by the Associated Press about
the same subject; National Public Radio, Montgomery, Alabama on April 1, 2002;
and by The Bent , Tau Beta Pi ’ s (all engineering society) magazine, about his profes-
sional accomplishments on November 4. 2002. This article was part of a series about
prominent Tau Beta Pi members.

 He is a member of the IEEE - USA Committee on Communications and Informa-
tion Technology Policy (CCIP). The objective of the CCIP is to infl uence the com-
munication and information technology policies of the executive and legislative
branches of federal and state governments. His primary contribution is developing
policies and models to defeat cyber security attacks. He has also contributed to
IEEE - USA Committee on Communications Policy in the area of personal identifi ca-
tion privacy and security.

 Part One

Computer
Engineering

Chapter 1

Digital Logic and
Microprocessor Design

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

T his chapter focuses on the fundamentals of digital logic and design, with numerous
examples from both computer hardware design and “ everyday life ” events to demonstrate
that digital logic is not confi ned to designing computers. My objective is to equip the engineer
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer
systems with the hardware design principles. Numerous design examples and solved problems
are provided to support learning objectives.

MICROPROCESSOR DESIGN

Functions

 Using its arithmetic logic unit (ALU), a microprocessor can perform mathematical
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that
can perform extremely sophisticated operations on large variable - length numbers.
In addition, a microprocessor can perform the following functions:

 Move data from one memory location to another.

 Make decisions and jump to a new set of computer program instructions based
on those decisions.

 Use an RD (read) and WR (write) line to tell the memory whether it wants to
read from or write to the addressed location.

 Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor.
For example, when numbers are added by the microprocessor, which you

3

4 Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each
binary bit addition to ultimately form a decimal result.

 Uses a reset line to reset the program counter to zero and restart execution.

Components

 Microprocessor components are the building blocks of modern computers. These
components are the following:

• ALU. Consists of accumulators, registers, and control unit.

• The ALU executes instructions and manipulates data.

• An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers,
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.

• An 8 - bit ALU would have to execute four instructions to add two 32 - bit
numbers (four add instructions, each of which adds 8 - bit numbers), whereas
a 32 - bit ALU can do it in one instruction.

• Accumulator. Holds data and instructions for processing by the ALU.

• Register. Temporary storage of instructions and data.

• Program Counter (PC). Contains the address of next instruction to be
executed

• Instruction Register (IR). Holds address of current instruction being
executed

• General Registers. Holds operator (e.g., code for add instruction), operands
(e.g., numbers to be added), and data while an instruction is executed

• Stack. Temporary storage of instructions and data, usually on a last in, fi rst
out (LIFO) basis. Also called push - down stack.

• Control Unit. Fetches and decodes instructions, generates signals for the ALU
to execute instructions

• Busses

• Address Bus. Path over which addresses fl ow for directing memory and
 input/output (I/O) data transfers. An address bus may be 8, 16, or 32 bits
wide that sends an address to memory or I/O for accessing memory or I/O.

• Data Bus. Transfers data. A data bus may be 8, 16, or 32 bits wide that can
send data to memory or I/O and receive data from memory or I/O. The
number of address bus lines determine the amount of addressable memory
(n lines = 2 n addressable words).

• Control Bus. Communicates control and status information.

• Chip. A chip is also called an integrated circuit. Generally it is a small, thin
piece of silicon onto which the transistors making up the microprocessor have
been etched. A chip might be as large as an inch on a side and can contain
tens of millions of transistors. Simpler processors might consist of a few

Digital Logic and Microprocessor Design 5

thousand transistors etched onto a chip just a few millimeters square. Microns
are the width of the smallest wire on the chip. For comparison, a human hair
is 100 μ m thick. As the feature size on the chip goes down, the number of
transistors rises.

Characteristics

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding
paragraphs.

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor).

 A crystal - controlled clock sequences the operations of a microprocessor (e.g.,
the sequence of computer program instruction execution) by generating CPs. Clock
speed is specifi ed in cycles per second, where 1 MHz is equal to 1 million cycles
per second. Clock speed is the maximum speed of the chip.

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code,
fetch operands from memory, execute the instruction, and store the result in memory.
In addition to clock speed, an important performance metric is the number of
fl oating - point operations per second or fl ops.

Complex instruction set computing (CISC). A single instruction can perform
several operations. This design simplifi es programming because, for example,
a single instruction can fetch instruction from memory, decode the operation
code, fetch operands from memory, execute the instruction, and store the
result in memory. However, the downside is the relatively slow speed of the
computer [RAF05] .

Reduced instruction set computing (RISC). Several operations are required to
execute a single instruction. This design provides high speed, for example,
well suited to real - time applications that must meet deadlines, but at the
expense of relatively complex programming.

Performance

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster
the internal clock, the more instructions can be processed per unit of time. For the
microprocessors in laptop and desktop computers, clock speeds are usually greater
than 100 MHz. The fastest microprocessors can run at a speed of 2 GHz. From a
user standpoint, the most important performance metric is program execution time,
defi ned as [HAR07] :

6 Computer, Network, Software, and Hardware Engineering with Applications

Program execution time Number of instructions in program= ()

∗∗ ∗() ().Clock cycles per instruction Time per clock cycle

 Another measure of performance is the number of instructions that can be processed
per second, referred to as MIPS, for million instructions per second. The MIPS rating
of a microprocessor depends on both the clock speed and the number of instructions
that can be executed per clock cycle. Simple microprocessors can execute a maximum
of one instruction per clock cycle. Advanced microprocessors can execute up to six
or eight instructions per clock cycle. The relationship between clock speed and MIPS
is not straightforward, however, because some instructions may take more than one
clock cycle to execute, depending on the program. The product of clock speed and
the number of instructions that can be executed per cycle may be greater than MIPS.
The maximum clock speed is a function of the manufacturing process and delays
within the chip. MIPS is proportional to the clock speed and inversely proportional
to the number of clock cycles per instruction.

 Another indication of microprocessor speed is the word length, as measured by
the number of bits of information that can be transferred simultaneously. Long words
allow the microprocessor to handle data and perform complex tasks more effi ciently.
The number of bits per word has been steadily increasing with the growth of circuit
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common.
Some personal computers use 32 - bit microprocessors. More powerful computers use
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple
embedded applications, such as microwave ovens, electric shavers, and televisions.
Figure 1.1 shows the microprocessor architecture.

Pipeline Systems

 An important aid to performance is the pipeline system. The purpose of a pipeline
system is to reduce delay caused by the computer processor having to wait for
instructions to complete. With a pipeline design, the processor begins the execution
of the next instruction while the current instruction is executing. Thus, various
phases of instruction execution are overlapped. The concept is to keep the pipeline
full, with as many execution sequences as possible. For example, due to overlapped
instruction execution, each instruction overlaps during (n − 1) clock cycles, and each
of m = 4 instructions requires one clock cycle, yielding (n − 1) + m = 7 clock
cycles, total, as shown in Figure 1.2 .

Problem: How is the increase in speed , obtained by a pipelined system over a
conventional system, computed?

Answer: Using Figure 1.2 as an example, the increase is computed as follows:

 The number of clock cycles required in conventional system is mn = 4 * 4 = 16 in
the example of Figure 1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

 mn n m− − + = − =(()) ,1 16 7 9

Digital Logic and Microprocessor Design 7

Figure 1.1 Microprocessor architecture.

Instruction
Register

Instruction
Cache

Control
Unit

Data Buffers

ALU

Program
Counter

Instruction
Register

General
Registers

Accumulators

Stacks

Memory

Data Bus

Input
Devices

Data Bus

Clock

Control Bus

Operator and
Operand Bus

Output
Devices

Data Bus

Interrupt
Service
Routine

Operating
System

Application
Program

Resource
Allocation

 and the increase in speed (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

 () / (()) / ((() /)) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase.

 The pipeline throughput is defi ned as the number of instructions , m, per total
clock cycle time required to process m instructions:

8 Computer, Network, Software, and Hardware Engineering with Applications

m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −()
,

 where T is clock cycle time per instruction.

Problem: Compute the throughput of the pipeline microprocessor in Figure 1.2 .

Answer: For a clock speed of 10 Mhz (10 7 clock cycles per second), T = 1/10 7

seconds, the throughput is:

 m m n T MIPS/ (()) / (()(/)) ()() / . .+ − = = =1 4 7 1 107 4 107 7 5 71

Pipeline effi ciency is computed as: speed increase/maximum speed increase (n = 4
clock cycles per instruction) = 2.286/4 = 0.5715.

Pipeline System Delay

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then

• Finish the earlier instructions on schedule and

• Delay the later instructions

• This is called stalling the pipeline

Structural hazard s are pipeline hardware delays.

Example: Memory does not respond to a request as fast as it is expected.

Data hazards arise when data are not ready in a pipeline at the time they are needed.

Figure 1.2 Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one
clock cycle; (n − 1) + m = 7 clock cycles (each instruction overlaps for [n − 1] clock cycles).

Memory

1

Memory

2

Memory

3

Memory

4

Latch 1 Latch 2 Latch 3

Instruction Input

Bus

T1 T2 T3 T4 T5 T6 T7Clock Cycle

I1 I1 Done

I2 Done

Instructions I1 I1

I2 I2 I2

I3 I3 I3 I3 Done

Instruction Queues

Hold

Instruction

I4 I4 I4 I4 Done

Digital Logic and Microprocessor Design 9

Example: An instruction needs data in a register that a previous instruction is
still modifying.

Control hazards arise when the central processing unit (CPU) needs to manage a
pipeline but instead must increment the program counter.

Example: Nonpipelined conditional branch instruction jumps to a pipelined
instruction.

Problem: Delay in a pipelined operation is illustrated in this problem that
compares the clock cycle delay for nonjump instructions with that of jump
instructions.

 If a jump instruction is executed in the pipelined CPU in Figure 1.2 , what is the
clock cycle delay?

Answer: Since the target of the jump instruction (another instruction) cannot
be decoded (i.e., program counter updated) until the jump instruction is
executed, there is a delay of three clock cycles.

Problem: What cam be done in a pipeline system to maintain performance
when a structural hazard occurs?

Answer: More resources can be employed, if available, or the pipeline can be
stalled (i.e., no instructions executed until needed hardware is available).

Problem: Is the microprocessor architecture in Figure 1.1 a pipeline computer?

Answer: No, it is not because only one instruction can be executed at a time.

Problem: What determines the clock cycle frequency of a pipeline system?

Answer: The clock cycle frequency of a pipeline system is governed by the
pipeline with the slowest processing time. For example, whichever pipeline
queue in Figure 1.2 experiences the slowest processing determines clock
cycle frequency.

Operating System

 The operating system contains the software necessary to manage the resources of a
computer system. An example is a signal called an interrupt that is used to indicate
to the microprocessor that an I/O device needs attention (i.e., data input or data
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure 1.1 . In addition to managing resources, the
operating system is responsible for allocating resources, for example, allocating
memory to the application program, as depicted in Figure 1.1 .

Memory

 Because computer performance depends on the characteristics of memory systems
in addition to the microprocessor architecture, it is important to consider the former

10 Computer, Network, Software, and Hardware Engineering with Applications

 [HAR07] . Two important types of memory systems are main memory (random
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory
can be divided between a relatively slow RAM for program and data access and a
fast cache memory for accessing recently used instructions and data. In addition,
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called direct
memory access (DMA), which allows I/O devices to communicate directly with
memory rather than using intermediate devices (such as data buffers in Fig. 1.1).

RAM

 RAM contains bytes of information that the microprocessor can read or write,
depending on whether the RD or WR line is activated. One problem with RAM
chips is that they are volatile; the RAM contents are lost once the power goes off.
That is why the microprocessor needs read - only memory (ROM).

ROM

 All microprocessors contain ROM. A ROM chip is programmed with a permanent
collection of preset bytes. The address bus tells the ROM chip which byte to read and
place on the data bus. The RD line signal causes the ROM chip to transfer the selected
byte to the data bus. On a personal computer, the program in the ROM is called the
 BIOS (basic input/output system). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and
then control is transferred to the hard disk to fetch the boot sector. The boot sector is
another small program that the BIOS stores in RAM after reading it from the disk.
The microprocessor then begins executing the boot sector ’ s instructions from RAM.
The boot sector program will tell the microprocessor to fetch more instructions from
the hard disk into RAM, which the microprocessor then executes, and so on. This is
how the microprocessor loads and executes the entire operating system.

Read/Write (R/W) Control Line

 This single wire is driven by the microprocessor to control memory functions. If the
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor
performs a write operation. The relationship between logic level and voltage level
can vary, depending on the implementation. For example, a logical 0 corresponds to
a voltage of 0 V, and a logical 1 corresponds to a voltage of 5 V. Figure 1.3 is a block
diagram of the microprocessor and memory, showing the R/W control line.

Address Bus

 These wires are controlled by the microprocessor to select a particular location in
memory for reading or writing. The microprocessor in Figure 1.3 uses a memory
chip that has 15 address wires.

Digital Logic and Microprocessor Design 11

Problem: How many locations can be addressed in Figure 1.3 ?

Answer: Since each wire has two states (it can be a digital 1 or a 0), 2 15 = 32,768
locations are possible. Thus, the system is said to have 32K of memory
(1K = 1024 bytes).

Data Bus

 These wires are used to pass data between the microprocessor and the memory.
When data are written to the memory, the microprocessor drives the data bus; when
data are read from the memory, memory drives the bus. In the example, in Figure
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8 or 256
different binary values per transfer. The data size of 8 bits is commonly referred to
as a byte. A data size of 4 bits is frequently referred to as a nibble.

Memory Enable Control Line

 This wire, called the Enable line, connects to the enable circuitry of the memory in
Figure 1.3 . When the memory is enabled, it performs either a read or write operation
as determined by the status of the R/W line.

Memory System Performance

 Memory system performance is computed by considering hit and miss rates and the
order of accessing memory components: cache memory, main memory, and hard
disk. These rates are related to whether the instructions or data that are required by
a program are available, fi rst, in the cache memory, or second, in the main memory.
If the instructions or data are in the cache, the access is scored as a cache hit;
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data

Figure 1.3 Diagram of microprocessor and memory.

A0:14 A0:14

D0:7 D0:7

E

Microprocessor

R/~W

Enable

Memory

R/~W

Address Bus (15 bits)

Data Bus (8 bits)

Enable

Read/Write Control Line

12 Computer, Network, Software, and Hardware Engineering with Applications

are not in the cache but are in main memory, the access is scored as a main memory
hit; otherwise, the access is scored as a main memory miss because the instructions
or data are only available on the hard disk [HAR07] . Thus, hit and miss rates are
computed as follows:

 Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,

 Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,

 Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,

 Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +(rry hits

Number of main memory misses).+

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing
computation:

 Hard disk access rate HDAR HAD Total number of memory ac() /= ccesses.

Problem: For example, consider the following case:

 4000 total number of memory accesses

 1200 cache accesses are hits and 800 are misses

 Of the 800 cache misses that require access to the main memory, 200 are hits
and 600 are misses

 Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.

Answer: CHR = 1200/4000 = 30%

 CMR = 800/4000 = 20%

 MMHR = 200/4000 = 5%

 MMMR = 600/4000 = 1%

 HAD = 4000 − (1200 + 200 + 600) = 2000

 HDAR = 1200/4000 = 50%

 Another memory performance metric is average access time (AAT), which is com-
puted as follows:

AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

()

() ++ ∗HDAR hard disk access time().

Digital Logic and Microprocessor Design 13

Problem: For the following typical access times: cache = 2 ns, main memory =
60 ns, and hard disk = 35 ms, and using the above hit and miss access rates,
compute the AAT.

Answer: AAT = (0.30)(2) + (0.04)(60) + (0.50)(35 * 10 6) ns = 20.50 * 10 6 ns
(of course, hard disk access time dominates).

Multiplexing Data and Address Signals

 On the Motorola 68HC11 microprocessor, in Figure 1.4 , the 8 - bit address/data bus
takes turns acting as an address bus and a data bus. When a memory location is
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting
the 8 lower - order bits of the address. Then the bus functions as a data bus, either
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data
bus. The support needed by the memory is provided by an 8 - bit latch (a device that
can store an address), using a multiplexed address/data bus. This chip (HC373)
performs the function of latching the lower 8 address bits, when combined with the
upper 7 address bits from the microprocessor, will provide the full 15 - bit address
for reading or writing data.

 Figure 1.4 shows how the latch is wired. The upper 7 address bits run directly
from the microprocessor to the memory. The lower 8 address bits are multiplexed
with 8 data bits . When an address appears on the wires AD: 07, the latch connects
the address bits of the microprocessor to the memory. On the other hand, when
data appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the

Figure 1.4 Block diagram of microprocessor and memory with latch.

A8:14 A8:14

AD0:7

A0:7

D0:7

Microprocessor

(Motorola 6811)

R/~WE AS

AS

Enable

Memory

R/~W

Address Bus (upper 7 bits)

Multiplexed
Address/Data Bus

(8 bits)

Read/Write Control Line

(32K static RAM)

Address Bus (lower 8 bits)

Latch
(’HC373)

“Address Strobe” Signal

Enable

14 Computer, Network, Software, and Hardware Engineering with Applications

microprocessor, tells the latch when to obtain the address bits from the address/data
bus. When the full 15 - bit address is available to the memory (upper 7 bits direct
from the microprocessor (wires A8: 14) and lower 8 bits from the latch (wires AD:
07), the read or write access can occur. Because the address/data bus is also wired
directly to the memory, data can fl ow in either direction between the memory and
the microprocessor. The entire process is managed by the microprocessor. The
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to
make sure these operations happen in the correct sequence and within the timing
capacities of the microprocessor hardware.

Memory Mapping the RAM

 Memory mapping refers to allocating blocks of memory to different functions, such
as the operating system and the application program. If a microprocessor has 15
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped.
This address space would be used by the 32K memory chip in Figure 1.5 . The
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s
A15 (the highest order address bit) is logic 1, the high - order address bit is selected.
The other 15 address bits (A0 through A14) determine the address within that 32K
block. If A15 is logic 0, the 32K block is not selected.

 A NAND gate (actually a portion of a programmable logic device called a PAL)
is used to enable the memory when A15 and the E Clock equal 1 in Figure 1.5 . (See
the “ Digital Logic ” section below for the explanation of NAND and other gates).

 The E Clock controls the timing of the chip enable line. Some memory chips
use an active low (sometimes called “ active false ”) signal to enable inputs, meaning
that they are enabled when the enable input is 0. The method for denoting an input
that is active low (i.e., 0) is shown in Figure 1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the
signal, CE, is prefi xed with a ∼ symbol.

Interrupt Handling

 The microprocessor has a bank of interrupt vectors, as shown in Figure 1.5 , which
are hardware - defi ned locations in the memory address space where the microproces-

Figure 1.5 Enabling the memory.

Interrupt vectors

Microprocessor R/~W

A15

E clock

PAL 16L8

Functions as NAND gate

32K memory chip

R/~W read/write line

O~CE chip enable line

Digital Logic and Microprocessor Design 15

sor expects to fi nd pointers to interrupt handling routines, for processing input and
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset,
it fi nds the reset vector to determine where it should begin running a program. These
vectors are located in the address space of the memory.

DIGITAL LOGIC

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where
the binary value 0 is considered “ low ” (e.g., low voltage) and the binary value 1 is
considered “ high ” (e.g., high voltage). While digital logic is used in the design of
microprocessors, “ everyday ” examples are provided to show that the logic opera-
tions are not restricted to microprocessors.

NOT : represented in Table 1.1 and implemented with an inverter in Figure 1.6 .

Application: The application is to complement the input A, producing the
output A.

Microprocessor example: the binary bit input was caused by an arithmetic
overfl ow condition, so it is ignored and not used in the computation.

Everyday example: if we are to leave on an automobile trip, where A = 1
represents leaving at 1000, A = 0 represents all times not equal to 1000.

OR : represented in Table 1.2 and implemented with OR gate in Figure 1.6 .

Application: The application is to produce a 1 output if any or both of the inputs
are 1.

Microprocessor example: the inputs are binary bits from memory stick or hard
disk, so the microprocessor can accept either or both to perform a computa-
tion, depending on the current computer program instruction.

Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile or both.

AND : represented n Table 1.3 and implemented with an AND gate in Figure 1.6 .

Application: The application is to produce a 1 output if all inputs are 1.

Table 1.1 NOT Truth Table

 Input Output

 A A
 0 1
 1 0

16 Computer, Network, Software, and Hardware Engineering with Applications

Table 1.2 OR Truth Table

 Input Input Output

 A B Z = A + B
 0 0 0
 0 1 1
 1 0 1
 1 1 1

Figure 1.6 Logic operations.

A –
A

B

A
Z = A + B

Inverter

OR Gate

AND Gate
A

B

Z = AB

o

A

B

NOR Gate

Z =

A + B

o

A

B

Z =

AB

A

B

XOR Gate

NAND Gate

Z = AB + AB
_ _

A
__
B

__
A
B

_
AB

Implementation of XOR Gate

o

Z =
_ _

AB + AB

XNOR Gate

A

B

Z = AB + AB

_

_ _

AB

Digital Logic and Microprocessor Design 17

Table 1.3 AND Truth Table

 Input Input Output

 A B Z = AB
 0 0 0
 0 1 0
 1 0 0
 1 1 1

Table 1.4 NOR Truth Table

 Input Input Output

 A B Z A B= +
 0 0 1
 0 1 0
 1 0 0
 1 1 0

Microprocessor example: the microprocessor uses a signal Z = 1 to tell it that
an interrupt has occurred on input line A and signifying that data input occurs
on B, which the microprocessor will transfer to its memory.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has both a gas
station and a restaurant.

NOR : represented in Table 1.4 and implemented with NOR gate in Figure 1.6 .

Application: The application is to produce a 1 output if all inputs are 0.

Microprocessor example: the microprocessor Z = 1 output is recognized as
interrupt code AB = 00.

Everyday example: if A = 0 represents the decision to not purchase a home
and B = 0 represents the decision not to purchase an automobile, then Z = 1
represents the decision to neither purchase a home nor purchase an
automobile.

NAND : represented in Table 1.5 and implemented with NAND gate in Figure 1.6 .

Table 1.5 NAND Truth Table

 Input Input Output

 A B Z AB=
 0 0 1
 0 1 1
 1 0 1
 1 1 0

18 Computer, Network, Software, and Hardware Engineering with Applications

Application: The application is to produce a 1 output if all inputs are not 1.

Microprocessor example: the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when
Z = 1 signals that 0s occur on either or both of two input channels.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has only a gas
station, or has only a restaurant, or has neither (i.e., rest stop).

Exclusive OR (XOR) : represented in Table 1.6 and implemented with EXCLUSIVE
OR gate in Figure 1.6 . The fi gure also shows how the gate can be implemented,
using AND and OR gates.

Application: The application is to produce a 1 output if any of the inputs is 1,
but not all inputs are 1, and not all inputs are 0.

Microprocessor example: the main microprocessor receives a signal Z = 1
from the output of the I/O microprocessor that a binary bit A = 1 from a
memory stick or B = 1 from a hard disk, and is ready for input, but these
inputs are not concurrent .

Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile, but not both at the same
time .

Exclusive NOR (XNOR) : represented in Table 1.7 and implemented with XNOR gate
in Figure 1.6 . The NOR gate is the negation of the XOR gate from Table 1.6 , as
indicated in Table 1.7 .

Table 1.6 EXCLUSIVE OR Truth Table

 Input Input Output

 A B Z AB AB= +
 0 0 0
 0 1 1
 1 0 1
 1 1 0

Table 1.7 EXCLUSIVE NOR (XNOR) Truth Table

 Input Input Output

 A B Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +()() ()()
 0 0 1
 0 1 0
 1 0 0
 1 1 1

Digital Logic and Microprocessor Design 19

Application: The application is to produce a 1 output if all inputs are 0 or all
inputs are 1.

Microprocessor example: Two hard drives are identifi ed as A = 0 and A = 1;
two fl ash memories are identifi ed as B = 0, and B = 1. The microprocessor
is programmed to input data from a hard drive and a fl ash memory concur-
rently . Therefore, it reads A = 0 and B = 0 or A = 1 and B = 1.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has neither a
gas station nor a restaurant (i.e., rest stop) or has both a gas station and
restaurant (i.e., get gas and eat).

De Morgan ’ s theorem [GRE80] is used to simplify complex logic equations and the
resultant digital logic. The theorem is used to simplify relatively simple expressions,
as contrasted with Karnaugh maps (K - maps), described in the next section. The
application of this theorem is shown in the following example:

 Theorem: A B AB and AB A B.+ = = +

 Suppose it is required to simplify F AB AB= (()()).
 Applying the theorem:

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,()() ()()

()1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =()(() ()

 Then, use Table 1.8 to demonstrate the equivalence between (()())AB AB and AB.

 K -MAPS

 A K - map in Table 1.9 is used to minimize a complex Boolean expression [RAF05] .
Each square of a K - map represents a minterm (i.e., product terms). The process
proceeds by listing the binary equivalents of the terms A and BC on the axes of
Table 1.9 , ordering them so that there is only a 1 - bit difference between adjacent
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed

Table 1.8 Truth Table to Demonstrate Equivalence between F and AB

 A B AB ABAB F AB AB= (()()) AB

 0 0 1 1 0 0
 0 1 1 1 0 0
 1 0 1 1 0 0
 1 1 0 0 1 1

20 Computer, Network, Software, and Hardware Engineering with Applications

 In the K - map, B is common to the enclosed minterms. Therefore, F B= . Table 1.10
demonstrates this result. The considerable reduction from the original function
would result in signifi cant savings in circuitry to implement the function.

Prime Implicant

 A prime implicant is the product term obtained by enclosing the maximum number
of adjacent cells in a K - map. For example, in the K - map of Table 1.9 , F B= is a
prime implicant. The prime implicant is only useful for providing a name for the
maximum enclosure in a K - map.

Quine–McCluskey Method

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table 1.11 by minimizing the function
F A B C A B C A B C A B C= + + + , where these minterms are placed in Table

Table 1.10 F Function Truth Table

 A B C F A B C A B C A B C A B C= + + + F B=

 0 0 0 1 1
 0 0 1 1 1
 0 1 0 0 0
 0 1 1 0 0
 1 0 0 1 1
 1 0 1 1 1
 1 1 0 0 0
 1 1 1 0 0

Table 1.9 K - Map for F ABC ABC ABC ABC= + + +

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product
terms are summed. Notice what a clever method this is. Minimization is achieved
by noting the combination of terms that yields the minimum difference!

Example: Simplify F A B C A B C A B C+A B C= + + .

Digital Logic and Microprocessor Design 21

 1.11 . This method is used to represent a difference of 1 between two adjacent minterms,
such as A B C and A B C, yielding A B- -= 00 . The symbol - is placed where there
is a difference in minterm bit values, such as between 00 - and 10 - in Table 1.11 ,
yielding - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a
difference of 1 (00 - compared with 10 -), yielding prime implicant B - -()0 . The same
result is obtained as was the case using the K - map in Table 1.9 . Of the two methods,
the K - map is easier to apply.

COMBINATIONAL CIRCUITS

 These are circuits that use logic gates to produce outputs at any time that are only
dependent on the current values of the inputs, meaning that it is not necessary to
use a CP to trigger outputs [HAR07] . A typical combinational circuit is the adder.

One-Bit Adder with Carry Out

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table 1.12 .

Two-bit Adder with Carry In and CO

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case,
you need to create a full binary adder. The difference between a full adder and the

Table 1.11 Quine – McCluskey Method for F A B C A B C A B C A B C B= + + + =

 Minterm ABC

 Difference of 1 Difference of 1
 Prime

implicant Minterms Minterms Minterms

 0 A B C 000 0,1 00 - 0,1,4,5 - 0 - B
 1 A B C 001
 4 A B C 100 4,5 10 -
 5 A B C 101

Table 1.12 One - Bit Adder Truth Table

 A B Q CO

 0 0 0 0
 0 1 1 0
 1 0 1 0
 1 1 0 1

22 Computer, Network, Software, and Hardware Engineering with Applications

1 - bit adder is that a full adder accepts A and B inputs plus a carry - in (CI) input.
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for
a full adder is slightly more complicated than the previous truth table because now
there are 3 input bits.

 A combinational circuit minterm is represented by a product in a row of the
truth table as shown in Table 1.13 , corresponding to a 1 in the Q or CO output
columns; for example, the fourth row for CO and the second row for Q in Table
 1.13 [GIB80] . The values of Q and CO product terms are obtained by ORing the
products in each row of Table 1.13 where Q = 1 or CO = 1, and then summing these
terms, followed by simplifying the expressions, as demonstrated in Table 1.13 .
Further simplifi cation may be possible by using a K - map.

 As can be seen in Table 1.14 , the adder output Q cannot be simplifi ed by using
a K - map because there are no adjacent cells. However, simplifi cation is achieved

Table 1.13 Two - Bit Adder Truth Table

 Q = 1 CO = 1

 CI A B Q CO Minterms Minterms

 0 0 0 0 0
 0 0 1 1 0 CI A B
 0 1 0 1 0 CI A B
 0 1 1 0 1 CI A B
 1 0 0 1 0 CI A B
 1 0 1 0 1 CI A B
 1 1 0 0 1 CI A B
 1 1 1 1 1 CI A B CI A B

 Q Product Terms: CI A B CI A B CI A B CIAB+ + +
Q CI A B A B CI (A B AB)= + + +()

 CO Product Terms: CIA B CI A B CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +
CO AB CI A B A B= + +()

Table 1.14 K - Map for Q CI A B CI A B CI A B= + + +

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +() ()

Digital Logic and Microprocessor Design 23

for CO, as shown in Table 1.15 , producing CO AB CI AB AB= + +() . The relevant
minterm cells in Table 1.15 that comprise the minimized function are outlined in
red. Minterm logic is called sum of products . The full adder logic that corresponds
to the minterms in Table 1.13 is shown in Figure 1.7 , showing the adder output Q
and the CO.

MULTIPLE OUTPUT COMBINATIONAL CIRCUITS

 Combinational circuits can have multiple outputs [RAF05] . Each output is expressed
as a function of the inputs, as shown in Table 1.16 , where the inputs are binary - coded
decimal (BCD) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A

Figure 1.7 Adder circuit.

A B

XOR Gate

XNOR Gate

A

B

_ _
AB + AB

CI (Carry In)

__
CI

__

__ _ _ __
CI (AB + AB)

_ _

AND Gate

CI

__
AB + AB

CI (AB + AB)

Q = CI (AB + AB) + CI (AB + AB)

_ OR Gate

Inverter

AND Gate

AB

XNOR Gate

CI

A

B

A

B

CI

AND Gate

CO = AB +CI (AB + AB)

OR Gate

Adder Output

Carry Out

Inputs

_ _

CI (AB + AB)
_(AB + AB)

_ _
_

Table 1.15 K - Map for Carry Out ()CO CIAB CIAB CIAB= + + +

AB

CI 00 01 11 10

0 1

1 1 1 1

CI A� B C�IAAB CIAB AB CIA B�

CIAB AB CI(AB AB)= + +

24 Computer, Network, Software, and Hardware Engineering with Applications

binary coded decimal converter is an example shown in Figure 1.8 , showing how
the number 9 can be displayed. The outputs are computer display segment bits a, … ,
g that represent the 1s necessary to generate the display decimal numbers. The code
converter transforms the BCD numbers 0000, … , 1001 to display segments. The
converter does not represent decimal numbers greater than 9. The K - maps use “ don ’ t
cares” = Xs in order to simplify the logic; the “ don ’ t cares ” should not be confused
with the BCD bit = X in Table 1.16 . The “ don ’ t cares ” are used to advantage in
forming minterms, as, for example, in Tables 1.17 – 1.23 .

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to
the 1s that appear in Table 1.16 . For example, for segment a in Table 1.17 , a 1 is
recorded in the cell WXYZ = 0000, corresponding to the 1 (bolded) in the segment
a column in Table 1.16 .

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig. 1.8). The equations will then be used to design the digital logic
circuit in Figures 1.9 and 1.10 .

Figure 1.8 BCD to seven - segment code converter.

BCD to Seven

Segment Code

Converter

W

X

Y

Z

a

b

c

d

e

f

g

a

b

c

g

de

f

Example: Number 9

BCD Input Bits
Computer Display

Segment Bits

Table 1.16 Truth Table for Binary - Coded Decimal (BCD) Converter

 Decimal
digit

 BCD input bits Computer display segment output bits

 W X Y Z a b c d e f g

 0 0 0 0 0 1 1 1 1 1 1 0
 1 0 0 0 1 0 1 1 0 0 0 0
 2 0 0 1 0 1 1 0 1 1 0 1
 3 0 0 1 1 1 1 1 1 0 0 1
 4 0 1 0 0 0 1 1 0 0 1 1
 5 0 1 0 1 1 0 1 1 0 1 1
 6 0 1 1 0 0 0 1 1 1 1 1
 7 0 1 1 1 1 1 0 1 0 0 0
 8 1 0 0 0 1 1 1 1 1 1 1
 9 1 0 0 1 1 1 1 0 0 1 1

