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Preface to Third Edition

There are a new features added to this third edition. The new development platform based
on the TM4C123 is called Tiva LaunchPad. Material in this book on the TM4C also
applies to the LM4F because Texas Instruments rebranded the LM4F series as TM4C
(same chips new name), and rebranded StellarisWare™ as TivaWare™. These new
microcontrollers run at 80 MHz, include single-precision floating point, have two 12-bit
ADCs, and support DMA and USB. A wonderful feature of these new boards is their low
cost. As of December 2013, the boards are available on TI.com as part number EK-
TM4C123GXL for $12.99. They are also available from $13 to $24 at regular electronics
retailers like arrow.com, newark.com, mouser.com, and digikey.com. The book can be
used with either a LM3S or TM4C microcontroller. Although this edition now focuses on
the M4, the concepts still apply to the M3, and the web site associated with this book has
example projects based on the LM3S811, LM351968, and LM3S8962.



Preface to Fourth Edition

This fourth edition includes the new TM4C1294-based LaunchPad. Most of the code in
the book is specific for the TM4C123-based LaunchPad. However, the book website
includes corresponding example projects for the LM3S811, LM3S1968, LM4F120, and
TM4C1294, which are ARM ® Cortex™-M microcontrollers from Texas Instruments.
There are now two lost-cost development platforms called Tiva LaunchPad. The EK-
TM4C123GXL LaunchPad retails for $12.99, and the EK-TM4C1294 XL Connected
LaunchPad retails for $19.99. The various LM3S, LM4F and TM4C microcontrollers are
quite similar, so this book along with the example code on the web can be used for any of
these microcontrollers. Compared to the TM4C123, the new TM4C1294 microcontroller
runs faster, has more RAM, has more ROM, includes Ethernet, and has more I/O pins.
This fourth edition switches the syntax from C to the industry-standard C99, adds a line-
tracking robot, designs an integral controller for a DC motor, and includes an expanded
section on wireless communication and Internet of Things.




Preface

Embedded systems are a ubiquitous component of our everyday lives. We interact with
hundreds of tiny computers every day that are embedded into our houses, our cars, our
toys, and our work. As our world has become more complex, so have the capabilities of
the microcontrollers embedded into our devices. The ARM ® Cortex™-M family
represents a new class of microcontrollers much more powerful than the devices available
ten years ago. The purpose of this book is to present the design methodology to train
young engineers to understand the basic building blocks that comprise devices like a cell
phone, an MP3 player, a pacemaker, antilock brakes, and an engine controller.

This book is the second in a series of three books that teach the fundamentals of embedded
systems as applied to the ARM ® Cortex™-M family of microcontrollers. The three
books are primarily written for undergraduate electrical and computer engineering
students. They could also be used for professionals learning the ARM platform. The first
book Embedded Systems: Introduction to ARM Cortex-M Microcontrollers is an
introduction to computers and interfacing focusing on assembly language and C
programming. This second book focuses on interfacing and the design of embedded
systems. The third book Embedded Systems: Real-Time Operating Systems for ARM
Cortex-M Microcontrollers is an advanced book focusing on operating systems, high-
speed interfacing, control systems, and robotics.

An embedded system is a system that performs a specific task and has a computer
embedded inside. A system is comprised of components and interfaces connected together
for a common purpose. This book presents components, interfaces and methodologies for
building systems. Specific topics include the architecture of microcontrollers, design
methodology, verification, hardware/software synchronization, interfacing devices to the
computer, timing diagrams, real-time operating systems, data collection and processing,
motor control, analog filters, digital filters, real-time signal processing, wireless
communication, and the internet of things.

In general, the area of embedded systems is an important and growing discipline within
electrical and computer engineering. The educational market of embedded systems has
been dominated by simple microcontrollers like the PIC, the 9S12, and the 8051. This is
because of their market share, low cost, and historical dominance. However, as problems
become more complex, so must the systems that solve them. A number of embedded
system paradigms must shift in order to accommodate this growth in complexity. First, the
number of calculations per second will increase from millions/sec to billions/sec.
Similarly, the number of lines of software code will also increase from thousands to
millions. Thirdly, systems will involve multiple microcontrollers supporting many
simultaneous operations. Lastly, the need for system verification will continue to grow as
these systems are deployed into safety critical applications. These changes are more than a
simple growth in size and bandwidth. These systems must employ parallel programming,
high-speed synchronization, real-time operating systems, fault tolerant design, priority
interrupt handling, and networking. Consequently, it will be important to provide our
students with these types of design experiences. The ARM platform is both low cost and
provides the high performance features required in future embedded systems. Although
the ARM market share is currently not huge, its share will grow. Furthermore, students



trained on the ARM will be equipped to design systems across the complete spectrum
from simple to complex. The purpose of writing these three books at this time is to bring
engineering education into the 21* century.

This book employs many approaches to learning. It will not include an exhaustive
recapitulation of the information in data sheets. First, it begins with basic fundamentals,
which allows the reader to solve new problems with new technology. Second, the book
presents many detailed design examples. These examples illustrate the process of design.
There are multiple structural components that assist learning. Checkpoints, with answers
in the back, are short easy to answer questions providing immediate feedback while
reading. Simple homework, with answers to the odd questions on the web, provides more
detailed learning opportunities. The book includes an index and a glossary so that
information can be searched. The most important learning experiences in a class like this
are of course the laboratories. Each chapter has suggested lab assignments. More detailed
lab descriptions are available on the web. Specifically, look at the lab assignments for
EE445L and EE445M.

There is a web site accompanying this book http://users.ece.utexas.edu/~valvano/arm.
Posted here are ARM Keil™ uVision® projects for each the example programs in the
book. Code Composer Studio™ versions are also available for most examples. You will
also find data sheets and Excel spreadsheets relevant to the material in this book.

These three books will cover embedded systems for ARM ® Cortex™-M
microcontrollers with specific details on the LM3S811, LM3S1968, LM3S8962,
L.M4F120, TM4C123, and TM4C1294. Most of the topics can be run on the low-cost
TM4C123. Ethernet examples can be run on the LM3S8962 and TM4C1294. In these
books the terms LM3S and LM4F and TMA4C will refer to any of the Texas Instruments
ARM ® Cortex™-M based microcontrollers. Although the solutions are specific for the
L.M3S LMA4F and TMA4C families, it will be possible to use these books for other ARM
derivatives.
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1. Introduction to Embedded Systems

Chapter 1 objectives are to:

» Review computer architecture

* Introduce embedded systems

* Present a process for design

» Discuss practical aspects of digital logic, including open collector
* Review how numbers are represented in binary

» Define ethics

The overall objective of this book is to teach the design of embedded systems. It is
effective to learn new techniques by doing them. But, the dilemma in teaching a
laboratory-based topic like embedded systems is that there is a tremendous volume of
details that first must be learned before hardware and software systems can be designed.
The approach taken in this book is to learn by doing, starting with very simple problems
and building up to more complex systems later in the book.

In this chapter we begin by introducing some terminology and basic components of a
computer system. In order to understand the context of our designs, we will overview the
general characteristics of embedded systems. It is in these discussions that we develop a
feel for the range of possible embedded applications. Next we will present a template to
guide us in design. We begin a project with a requirements document. Embedded systems
interact with physical devices. Often, we can describe the physical world with
mathematical models. If a model is available, we can then use it to predict how the
embedded system will interface with the real world. When we write software, we
mistakenly think of it as one dimensional, because the code looks sequential on the
computer screen. Data flow graphs, call graphs, and flow charts are multidimensional
graphical tools to understand complex behaviors. Because courses taught using this book
typically have a lab component, we will review some practical aspects of digital logic.

Next, we show multiple ways to represent numbers in the computer. Choosing the correct
format is necessary to implement efficient and correct solutions. Fixed-point numbers are
the typical way embedded systems represent non-integer values. Floating-point numbers,
typically used to represent non-integer values on a general purpose computer, will also be
presented.

Because embedded systems can be employed in safety critical applications, it is important
for engineers be both effective and ethical. Throughout the book we will present ways to
verify the system is operating within specifications.



1.1. Computer Architecture

1.1.1. Computers, microprocessors, memory, and
microcontrollers

A computer combines a processor, random access memory (RAM), read only memory
(ROM), and input/output (I/O) ports. The common bus in Figure 1.1 defines the von
Neumann architecture, where instructions are fetched from ROM on the same bus as data
fetched from RAM. Software is an ordered sequence of very specific instructions that are
stored in memory, defining exactly what and when certain tasks are to be performed. The
processor executes the software by retrieving and interpreting these instructions one at a
time. A microprocessor is a small processor, where small refers to size (i.e., it fits in your
hand) and not computational ability. For example, Intel Xeon, AMD FX and Sun SPARC
are microprocessors. An ARM ® Cortex™-M microcontroller includes a processor
together with the bus and some peripherals. A microcomputer is a small computer, where
again small refers to size (i.e., you can carry it) and not computational ability. For
example, a desktop PC is a microcomputer.

Computer Bus
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Figure 1.1. The basic components of a computer system include processor,
memory and 1/0.

A very small microcomputer, called a microcontroller, contains all the components of a
computer (processor, memory, I/O) on a single chip. As shown in Figure 1.2, the Atmel
ATtiny, the Texas Instruments MSP430, and the Texas Instruments TM4C123 are
examples of microcontrollers. Because a microcomputer is a small computer, this term
can be confusing because it is used to describe a wide range of systems from a 6-pin
ATtiny4 running at 1 MHz with 512 bytes of program memory to a personal computer
with state-of-the-art 64-bit multi-core processor running at multi-GHz speeds having
terabytes of storage.



The computer can store information in RAM by writing to it, or it can retrieve previously
stored data by reading from it. Most RAMs are volatile; meaning if power is interrupted
and restored the information in the RAM is lost. Most microcontrollers have static RAM
(SRAM) using six metal-oxide-semiconductor field-effect transistors (MOSFET) to create
each memory bit. Four transistors are used to create two cross-coupled inverters that store
the binary information, and the other two are used to read and write the bit.
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Figure 1.2. A microcontroller is a complete computer on a single chip.

Information is programmed into ROM using techniques more complicated than writing to
RAM. From a programming viewpoint, retrieving data from a ROM is identical to
retrieving data from RAM. ROMs are nonvolatile; meaning if power is interrupted and
restored the information in the ROM is retained. Some ROMs are programmed at the
factory and can never be changed. A Programmable ROM (PROM) can be erased and
reprogrammed by the user, but the erase/program sequence is typically 10000 times
slower than the time to write data into a RAM. PROMs used to need ultraviolet light to
erase, and then we programmed them with voltages. Now, most PROMs now are
electrically erasable (EEPROM), which means they can be both erased and programmed
with voltages. We cannot program ones into the ROM. We first erase the ROM, which
puts ones into its storage memory, and then we program the zeros as needed. Flash ROM
is a popular type of EEPROM. Each flash bit requires only two MOSFET transistors. The
input (gate) of one transistor is electrically isolated, so if we trap charge on this input, it
will remain there for years. The other transistor is used to read the bit by sensing whether
or not the other transistor has trapped charge. In regular EEPROM, you can erase and
program individual bytes. Flash ROM must be erased in large blocks. On many of
LM3S/LM4F/TM4C microcontrollers, we can erase the entire ROM or just a 1024-byte
block. Because flash is smaller than regular EEPROM, most microcontrollers have a large
flash into which we store the software. For all the systems in this book, we will store
instructions and constants in flash ROM and place variables and temporary data in static
RAM.

Checkpoint 1.1: What are the differences between a microcomputer, a microprocessor
and a microcontroller?

Checkpoint 1.2: Which has a higher information density on the chip in bits per mm?:
static RAM or flash ROM? Assume all MOSFETs are approximately the same size in

mm?.

Observation: Memory is an object that can transport information across time.



The external devices attached to the microcontroller provide functionality for the system.
An input port is hardware on the microcontroller that allows information about the
external world to be entered into the computer. The microcontroller also has hardware
called an output port to send information out to the external world. Most of the pins
shown in Figure 1.2 are input/output ports.

An interface is defined as the collection of the I/O port, external electronics, physical
devices, and the software, which combine to allow the computer to communicate with the
external world. An example of an input interface is a switch, where the operator toggles
the switch, and the software can recognize the switch position. An example of an output
interface is a light-emitting diode (LED), where the software can turn the light on and off,
and the operator can see whether or not the light is shining. There is a wide range of
possible inputs and outputs, which can exist in either digital or analog form. In general, we
can classify I/0 interfaces into four categories

Parallel - binary data are available simultaneously on a group of lines
Serial - binary data are available one bit at a time on a single line
Analog - data are encoded as an electrical voltage, current, or power

Time - data are encoded as a period, frequency, pulse width, or phase shift

Checkpoint 1.3: What are the differences between an input port and an input interface?
Checkpoint 1.4: List three input interfaces available on a personal computer.
Checkpoint 1.5: List three output interfaces available on a personal computer.

In this book, numbers that start with 0x (e.g., 0x64) are specified in hexadecimal, which
is base 16 (0x64 = 6*16'+4*16° = 100). Some assemblers start hexadecimal numbers with
$ (e.g., $64). Other assembly languages add an “H” at the end to specify hexadecimal
(e.g., 64H or 64h). Yale Patt’s LC3 assembler uses just the “x” (e.g., x64).

In a system with memory mapped 1/0, as shown in Figure 1.1, the I/O ports are
connected to the processor in a manner similar to memory. I/O ports are assigned
addresses, and the software accesses I/0O using reads and writes to the specific /O
addresses. The software inputs from an input port using the same instructions as it would
if it were reading from memory. Similarly, the software outputs from an output port using
the same instructions as it would if it were writing to memory. A bus is defined as a
collection of signals, which are grouped for a common purpose. The bus has three types of
signals: address signals, data signals, and control signals. Together, the bus directs the
data transfer between the various modules in the computer. There are five buses on

ARM ® Cortex™-M processor, as illustrated in Figure 1.3. The address specifies which
module is being accessed, and the data contains the information being transferred. The
control signals specify the direction of transfer, the size of the data, and timing
information. The ICode bus is used to fetch instructions from flash ROM. All ICode bus
fetches contain 32 bits of data, which may be one or two instructions. The DCode bus can
fetch data or debug information from flash ROM. The system bus can read/write data
from RAM or I/O ports. The private peripheral bus (PPB) can access some of the



common peripherals like the interrupt controller. The multiple-bus architecture allows
simultaneous bus activity, greatly improving performance over single-bus architectures.
For example, the processor can simultaneously fetch an instruction out of flash ROM
using the ICode bus while it writes data into RAM using the system bus. From a software
development perspective, the fact that there are multiple buses is transparent. This means
we write code like we would on any computer, and the parallel operations occur
automatically. The TM4C123 has 256 kibibytes (22 bytes) of flash ROM and 32768 bytes
of RAM. The TM4C1294 has 1024 kibibytes (22° bytes) of flash ROM and 256 kibibytes
of RAM. The RAM begins at 0x2000.0000, and the flash ROM begins at 0x0000.0000.

T™M4C123 TM4C1294
0x0000.0000 256k 0x0000.0000 1024k
Flash Flash
0x0003.FFFF ROM 0x000F.FFFF ROM
0x2000.0000 32k 0x2000.0000 256k
Static Static
0x2000.7FFF RAM 0x2003.FFFF RAM
Microcorrder Systembus
ARM ECortex™ —I 1
processor i TR —
F‘F‘B:: :: :: W) T . p:rts E
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Figure 1.3. Harvard architecture of an ARM ® Cortex -M-based
microcontroller.

The Cortex™-M4 series includes an additional bus called the Advanced High-
Performance Bus (AHB or AHPB). This bus improves performance when communicating

with high-speed 1I/0 devices like USB. In general, the more operations that can be
performed in parallel, the faster the processor will execute. In summary:

ICode bus Fetch opcodes from ROM



DCode bus Read constant data from ROM

System bus Read/write data from RAM or /O, fetch opcode from RAM
PPB Read/write data from internal peripherals like the NVIC
AHB Read/write data from high-speed 1/O and parallel ports (M4 only)

Instructions and data are accessed the same way on a von Neumann machine. The
Cortex™-M processor is a Harvard architecture because instructions are fetched on the
ICode bus and data accessed on the system bus. The address signals on the ARM ®
Cortex™-M processor include 32 lines, which together specify the memory address
(0x0000.0000 to OxFFFF.FFFF) that is currently being accessed. The address specifies
both which module (input, output, RAM, or ROM) as well as which cell within the
module will communicate with the processor. The data signals contain the information that
is being transferred and also include 32 bits. However, on the system bus it can also
transfer 8-bit or 16-bit data. The control signals specify the timing, the size, and the
direction of the transfer. We call a complete data transfer a bus cycle. Two types of
transfers are allowed, as shown in Table 1.1. In most systems, the processor always
controls the address (where to access), the direction (read or write), and the control (when
to access.)

Type Address Driven | Data Driven by | Transfer
by
Read Cycle Processor RAM, ROM or | Data copied to
Input processor
Write Cycle Processor Processor Data copied to output
or RAM

Table 1.1. Simple computers generate two types of bus cycles.

A read cycle is used to transfer data into the processor. During a read cycle the processor
first places the address on the address signals, and then the processor issues a read
command on the control signals. The slave module (RAM, ROM, or I/O) will respond by
placing the contents at that address on the data signals, and lastly the processor will accept
the data and disable the read command.

The processor uses a write cycle to store data into memory or I/O. During a write cycle
the processor also begins by placing the address on the address signals. Next, the
processor places the information it wishes to store on the data signals, and then the
processor issues a write command on the control signals. The memory or I/0 will respond
by storing the information into the proper place, and after the processor is sure the data has
been captured, it will disable the write command.



The bandwidth of an I/O interface is the number of bytes/sec that can be transferred. If
we wish to transfer data from an input device into RAM, the software must first transfer
the data from input to the processor, then from the processor into RAM. On the ARM, it
will take multiple instructions to perform this transfer. The bandwidth depends both on the
speed of the I/O hardware and the software performing the transfer. In some
microcontrollers like the TM4C123 and TM4C1294, we will be able to transfer data
directly from input to RAM or RAM to output using direct memory access (DMA). When
using DMA the software time is removed, so the bandwidth only depends on the speed of
the I/O hardware. Because DMA is faster, we will use this method to interface high
bandwidth devices like disks and networks. During a DMA read cycle data flows directly
from the memory to the output device. General purpose computers also support DMA
allowing data to be transferred from memory to memory. During a DMA write cycle data
flows directly from the input device to memory.

Input/output devices are important in all computers, but they are especially significant in
an embedded system. In a computer system with I/O-mapped I/0, the control bus signals
that activate the I/O are separate from those that activate the memory devices. These
systems have a separate address space and separate instructions to access the I/O devices.
The original Intel 8086 had four control bus signals MEMR, MEMW, IOR, and IOW.
MEMR and MEMW were used to read and write memory, while IOR and IOW were used
to read and write I/O. The Intel x86 refers to any of the processors that Intel has developed
based on this original architecture. Even though we do not consider the personal computer
(PC) an embedded system, there are embedded systems developed on this architecture.
One such platform is called the PC/104 Embedded-PC. The Intel x86 processors continue
to implement this separation betweenmemory and I/O. Rather than use the regular
memory access instructions, the Intel x86 processor uses special in and out instructions to
access the I/0 devices. The advantages of I/O-mapped I/O are that software can not
inadvertently access I/0 when it thinks it is accessing memory. In other words, it protects
I/O devices from common software bugs, such as bad pointers, stack overflow, and buffer
overflows. In contrast, systems with memory-mapped I/O are easier to design, and the
software is easier to write.

1.1.2. Cortex™-M processor

The ARM ® Cortex™-M processor has four major components, as illustrated in Figure
1.4. There are four bus interface units (BIU) that read data from the bus during a read
cycle and write data onto the bus during a write cycle. Both the TM4C123 and TM4C1294
microcontrollers support DMA. The BIU always drives the address bus and the control
signals of the bus. The effective address register (EAR) contains the memory address
used to fetch the data needed for the current instruction. Cortex™-M microcontrollers
executeThumb ® instructions extended with Thumb-2 technology. An overview of these
instructions will be presented in Chapter 2. The Cortex™-M4F microcontrollers include a
floating-point processor. However, in this book we will focus on integer and fixed-point
arithmetic.
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Figure 1.4. The four basic components of a processor.

The control unit (CU) orchestrates the sequence of operations in the processor. The CU
issues commands to the other three components. The instruction register (IR) contains
the operation code (or op code) for the current instruction. When extended with Thumb-2
technology, op codes are either 16 or 32 bits wide. In an embedded system the software is
converted to machine code, which is a list of instructions, and stored in nonvolatile flash
ROM. As instructions are fetched, they are placed in a pipeline. This allows instruction
fetching to run ahead of execution. Instructions are fetched in order and executed in order.
However, it can execute one instruction while fetching the next.

The registers are high-speed storage devices located in the processor (e.g., RO to R15).
Registers do not have addresses like regular memory, but rather they have specific
functions explicitly defined by the instruction. Registers can contain data or addresses.
The program counter (PC) points to the memory containing the instruction to execute
next. On the ARM ® Cortex™-M processor, the PC is register 15 (R15). In an embedded
system, the PC usually points into nonvolatile memory like flash ROM. The information
stored in nonvolatile memory (e.g., the instructions) is not lost when power is removed.
The stack pointer (SP) points to the RAM, and defines the top of the stack. The stack
implements last in first out (LIFO) storage. On the ARM ® Cortex™-M processor, the SP
is register 13 (R13). The stack is an extremely important component of software
development, which can be used to pass parameters, save temporary information, and
implement local variables. The program status register (PSR) contains the status of the
previous operation, as well as some operating mode flags such as the interrupt enable bit.
This register is called the flag register on the Intel computers.

The arithmetic logic unit (ALU) performs arithmetic and logic operations. Addition,
subtraction, multiplication and division are examples of arithmetic operations. And, or,
exclusive or, and shift are examples of logical operations.

Checkpoint 1.6: For what do the acronyms CU DMA BIU ALU stand?

In general, the execution of an instruction goes through four phases. First, the computer
fetches the machine code for the instruction by reading the value in memory pointed to by
the program counter (PC). Some instructions are 16 bits, while others are 32 bits. After
each instruction is fetched, the PC is incremented to the next instruction. At this time, the
instruction is decoded, and the effective address is determined (EAR). Many instructions
require additional data, and during phase 2 the data is retrieved from memory at the
effective address. Next, the actual function for this instruction is performed. During the
last phase, the results are written back to memory. All instructions have a phase 1, but the
other three phases may or may not occur for any specific instruction.



On the ARM ® Cortex™-M processor, an instruction may read memory or write memory,
but it does not both read and write memory in the same instruction. Each of the phases
may require one or more bus cycles to complete. Each bus cycle reads or writes one piece
of data. Because of the multiple bus architecture, most instructions execute in one or two
cycles. For more information on the time to execute instructions, see Table 3.1 in the
Cortex™-M Technical Reference Manual. ARM is a reduced instruction set computer
(RISC), which achieves high performance by implementing very simple instructions that
run extremely fast.

Phase Function Bus Address | Comment
1 Instruction Read PC++ Put into IR
fetch

2 Data read Read |EAR Data passes through
ALU

3 Operation - - ALU operations, set
PSR

4 Data store Write | EAR Results stored in
memory

Table 1.2. Four phases of execution.

An instruction on a RISC processor does not have both a phase 2 data read cycle and a
phase 4 data write cycle. In general, a RISC processor has a small number of instructions,
instructions have fixed lengths, instructions execute in 1 or 2 bus cycles, there are only a
few instructions (e.g., load and store) that can access memory, no one instruction can both
read and write memory in the same instruction, there are many identical general purpose
registers, and there are a limited number of addressing modes.

Conversely, processors are classified as complex instruction set computers (CISC),
because one instruction is capable of performing multiple memory operations. For
example, CISC processors have instructions that can both read and write memory in the
same instruction. Assume Data is an 8-bit memory variable. The following Intel 8080
instruction will increment the 8-bit variable, requiring a read memory cycle, ALU
operation, and then a write memory cycle.

INR Data ; Intel 8080



Other CISC processors like the 6800, 9512, 8051, and Pentium also have memory
increment instructions requiring both a phase 2 data read cycle and a phase 4 data write
cycle. In general, a CISC processor has a large number of instructions, instructions have
varying lengths, instructions execute in varying times, there are many instructions that can
access memory, the processor can both read and write memory in one instruction, the
processor has fewer and more specialized registers, and the processor has many addressing
modes.

1.1.3. History

In 1968, two unhappy engineers named Bob Noyce and Gordon Moore left the Fairchild
Semiconductor Company and created their own company, which they called Integrated
Electronics (Intel). Working for Intel in 1971, Federico Faggin, Ted Hoff, and Stan Mazor
invented the first single chip microprocessor, the Intel 4004. It was a four-bit processor
designed to solve a very specific application for a Japanese company called Busicon.
Busicon backed out of the purchase, so Intel decided to market it as a “general purpose”
microprocessing system. The product was a success, which lead to a series of more
powerful microprocessors: the Intel 8008 in 1974, the Intel 8080 also in 1974. Both the
Intel 8008 and the Intel 8080 were 8-bit microprocessors that operated from a single +5V
power supply using N-channel metal-oxide semiconductor (NMOS) technology.

Seeing the long term potential for this technology, Motorola released its MC6800 in 1974,
which was also an 8-bit processor with about the same capabilities of the 8080. Although
similar in computing power, the 8080 and 6800 had very different architectures. The 8080
used isolated I/0 and handled addresses in a fundamentally different way than data.
Isolated I/0O defines special hardware signals and special instructions for input/output. On
the 8080, certain registers had capabilities designed for addressing, while other registers
had capabilities for specific for data manipulation. In contrast, the 6800 used memory-
mapped I/O and handled addresses and data in a similar way. As we defined earlier,
input/output on a system with memory-mapped I/O is performed in a manner similar to
accessing memory.

During the 1980s and 1990s, Motorola and Intel traveled down similar paths. The
microprocessor families from both companies developed bigger and faster products: Intel
8085, 8088, 80x86, ... and the Motorola 6809, 68000, 680x0... During the early 1980’s
another technology emerged, the microcontroller. In sharp contrast to the microprocessor
family, which optimized computational speed and memory size at the expense of power
and physical size, the microcontroller devices minimized power consumption and physical
size, striving for only modest increases in computational speed and memory size. Out of
the Intel architecture came the 8051 family (www.semiconductors.philips.com), and out of
the Motorola architecture came the 6805, 6811, and 6812 microcontroller family
(www.freescale.com). Many of the same fundamental differences that existed between the
original 8-bit Intel 8080 and Motorola 6800 have persisted over forty years of
microprocessor and microcontroller developments. In 1999, Motorola shipped its 2
billionth MC68HCO05 microcontroller. In 2004, Motorola spun off its microcontroller
products as Freescale Semiconductor. Microchip is a leading supplier of 8-bit
microcontrollers.



The first ARM processor was conceived in the 1983 by Acorn Computers, which at the
time was one of the leaders of business computers in the United Kingdom. The first chips
were delivered in 1985. At that time ARM referred to Acorn RISC Machine. In 1990, a
new company ARM Ltd was formed with Acorn, Apple, and VLSI Technology as
founding partners, changing the ARM acronym to Advanced RISC Machine. As a
company, the ARM business model involves the designing and licensing of intellectual
property (IP) rather than the manufacturing and selling of actual semiconductor chips.
ARM has sold 600 processor licenses to more than 200 companies. Virtually every
company that manufacturers integrated circuits in the computer field produces a variant of
the ARM processor. ARM currently dominates the high-performance low-power
embedded system market. ARM processors account for approximately 90% of all
embedded 32-bit RISC processors and are used in consumer electronics, including PDAs,
cell phones, music players, hand-held game consoles, and calculators. The ARM Cortex-A
is used in applications processors, such as smartphones. The ARM Cortex-R is appropriate
for real-time applications, and ARM Cortex-M targets microcontrollers. Examples of
microcontrollers built using the ARM ® Cortex™-M core are LM3S/TM4C by Texas
Instruments, STM32 by STMicroelectronics, LPC17xx by NXP Semiconductors,
TMPM330 by Toshiba, EM3xx by Ember, AT91SAMS3 by Atmel, and EFM32 by Energy
Micro. As of June 2014 over 50 billion ARM processors have shipped from over 950
companies.

What will the future unfold? One way to predict the future is to study the past. How
embedded systems interact with humans has been and will continue to be critical.
Improving the human experience has been the goal of many systems. Many predict the
number of microcontrollers will soon reach into the trillions. As this happens,
communication, security, energy, politics, resources, and economics will be become
increasingly important. When there are this many computers, it will be possible to make
guesses about how to change, then let a process like evolution select which changes are
beneficial. In fact, a network of embedded systems with tight coupling to the real world,
linked together for a common objective, is now being called a cyber-physical system
(CPS).

One constant describing the history of computers is continuous change coupled with
periodic monumental changes. Therefore, engineers must focus their education on
fundamental principles rather than the voluminous details. They must embrace the concept
of lifelong learning. Most humans are fundamentally good, but some are not. Therefore,
engineers acting in an ethical manner can guarantee future prosperity of the entire planet.



1.2. Embedded Systems

An embedded system is an electronic system that includes a one or more microcontrollers
that is configured to perform a specific dedicated application, drawn previously as Figure
1.1. To better understand the expression “embedded system,” consider each word
separately. In this context, the word embedded means “a computer is hidden inside so one
can’t see it.” The word “system” refers to the fact that there are many components which
act in concert achieving the common goal. As mentioned earlier, input/output devices
characterize the embedded system, allowing it to interact with the real world.

The software that controls the system is programmed or fixed into flash ROM and is not
accessible to the user of the device. Even so, software maintenance is still extremely
important. Software maintenance is verification of proper operation, updates, fixing bugs,
adding features, and extending to new applications and end user configurations.
Embedded systems have these four characteristics.

First, embedded systems typically perform a single function. Consequently, they solve a
limited range of problems. For example, the embedded system in a microwave oven may
be reconfigured to control different versions of the oven within a similar product line. But,
a microwave oven will always be a microwave oven, and you can’t reprogram it to be a
dishwasher. Embedded systems are unique because of the microcontroller’s I/O ports to
which the external devices are interfaced. This allows the system to interact with the real
world.

Second, embedded systems are tightly constrained. Typically, system must operate within
very specific performance parameters. If an embedded system cannot operate with
specifications, it is considered a failure and will not be sold. For example, a cell-phone
carrier typically gets 832 radio frequencies to use in a city, a hand-held video game must
cost less than $50, an automotive cruise control system must operate the vehicle within 3
mph of the set-point speed, and a portable MP3 player must operate for 12 hours on one
battery charge.

Third, many embedded systems must operate in real-time. In a real-time system, we can
put an upper bound on the time required to perform the input-calculation-output sequence.
A real-time system can guarantee a worst case upper bound on the response time between
when the new input information becomes available and when that information is
processed. Another real-time requirement that exists in many embedded systems is the
execution of periodic tasks. A periodic task is one that must be performed at equal time
intervals. A real-time system can put a small and bounded limit on the time error between
when a task should be run and when it is actually run. Because of the real-time nature of
these systems, microcontrollers in the TM4C family have a rich set of features to handle
all aspects of time.



The fourth characteristic of embedded systems is their small memory requirements as
compared to general purpose computers. There are exceptions to this rule, such as those
which process video or audio, but most have memory requirements measured in thousands
of bytes. Over the years, the memory in embedded systems as increased, but the gap
memory size between embedded systems and general purpose computers remains. The
original microcontrollers had thousands of bytes of memory and the PC had millions.
Now, microcontrollers can have millions of bytes, but the PC has billions.

There have been two trends in the microcontroller field. The first trend is to make
microcontrollers smaller, cheaper, and lower power. The Atmel ATtiny, Microchip PIC,
and Texas Instruments MSP430 families are good examples of this trend. Size, cost, and
power are critical factors for high-volume products, where the products are often
disposable. On the other end of the spectrum is the trend of larger RAM and ROM, faster
processing, and increasing integration of complex I/O devices, such as Ethernet, radio,
graphics, and audio. It is common for one device to have multiple microcontrollers, where
the operational tasks are distributed and the microcontrollers are connected in a local area
network (LAN). These high-end features are critical for consumer electronics, medical
devices, automotive controllers, and military hardware, where performance and reliability
are more important than cost. However, small size and low power continue as important
features for all embedded systems.

The RAM is volatile memory, meaning its information is lost when power is removed. On
some embedded systems a battery powers the microcontroller. When in the off mode, the
microcontroller goes into low-power sleep mode, which means the information in RAM is
maintained, but the processor is not executing. The MSP430 and ATtiny require less than
a A of current in sleep mode.

Checkpoint 1.7: What is an embedded system?
Checkpoint 1.8: What goes in the RAM on a smartphone?
Checkpoint 1.9: Why does your smartphone need so much flash ROM?

The computer engineer has many design choices to make when building a real-time
embedded system. Often, defining the problem, specifying the objectives, and identifying
the constraints are harder than actual implementations. In this book, we will develop
computer engineering design processes by introducing fundamental methodologies for
problem specification, prototyping, testing, and performance evaluation.

A typical automobile now contains an average of ten microcontrollers. In fact, upscale
homes may contain as many as 150 microcontrollers and the average consumer now
interacts with microcontrollers up to 300 times a day. The general areas that employ
embedded systems encompass every field of engineering:

* Consumer Electronics * Home
e« Communications e Automotive
* Military * Industrial

* Business * Shipping



» Medical « Computer components

In general, embedded systems have inputs, perform calculations, make decisions, and then
produce outputs. The microcontrollers often must communicate with each other. How the
system interacts with humans is often called the human-computer interface (HCI) or
man-machine interface (MMI). To get a sense of what “embedded system” means we
will present brief descriptions of four example systems.

Example 1.1: The goal of a pacemaker is to regulate and improve heart function. To be
successful the engineer must understand how the heart works and how disease states cause
the heart to fail. Its inputs are sensors on the heart to detect electrical activity, and its
outputs can deliver electrical pulses to stimulate the heart. Consider a simple pacemaker
with two sensors, one in the right atrium and the other in the right ventricle. The sensor
allows the pacemaker to know if the normal heart contraction is occurring. This
pacemaker has one right ventricular stimulation output. The embedded system analyzes
the status of the heart deciding where and when to send simulation pulses. If the
pacemaker recognizes the normal behavior of atrial contraction followed shortly by
ventricular contraction, then it will not stimulate. If the pacemaker recognizes atrial
contraction without a following ventricular contraction, then is will pace the ventricle
shortly after each atrial contraction. If the pacemaker senses no contractions or if the
contractions are too slow, then it can pace the ventricle at a regular rate. A pacemaker can
also communicate via radio with the doctor to download past performance and optimize
parameters for future operation. Some pacemakers can call the doctor on the phone when
it senses a critical problem. Pacemakers are real-time systems because the time delay
between atrial sensing and ventricular triggering is critical. Low power and reliability are
important.

Example 1.2: The goal of a smoke detector is to warn people in the event of a fire. It has
two inputs. One is a chemical sensor that detects the presence of smoke, and the other is a
button that the operator can push to test the battery. There are also two outputs: an LED
and the alarm. Most of the time, the detector is in a low-power sleep mode. If the test
button is pushed, the detector performs a self-diagnostic and issues a short sound if the
sensor and battery are ok. Once every 30 seconds, it wakes up and checks to see if it
senses smoke. If it senses smoke, it will alarm. Otherwise it goes back to sleep.

Advanced smoke detectors should be able to communicate with other devices in the home.
If one sensor detects smoke, all alarms should sound. If multiple detectors in the house
collectively agree there is really a fire, they could communicate with the fire department
and with the neighboring houses. To design and deploy a collection of detectors, the
engineer must understand how fires start and how they spread. Smoke detectors are not
real-time systems. However, reliability and low power are important.



Example 1.3: The goal of a motor controller is to cause a motor to spin in a desired
manner. Sometimes we control speed, as in the cruise control on an automobile.
Sometimes we control position as in moving paper through a printer. In a complex
robotics system, we may need to simultaneously control multiple motors and multiple
parameters such as position, speed, and torque. Torque control is important for building a
robot that walks. The engineer must understand the mechanics of how the motor interacts
with its world and the behavior of the interface electronics. The motor controller uses
sensors to measure the current state of the motor, such as position, speed, and torque. The
controller accepts input commands defining the desired operation. The system uses
actuators, which are outputs that affect the motor. A typical actuator allows the system to
set the electrical power delivered to the motor. Periodically, the microcontroller senses the
inputs and calculates the power needed to minimize the difference between measured and
desired parameters. This needed power is output to the actuator. Motor controllers are real-
time systems, because performance depends greatly on when and how fast the controller
software runs. Accuracy, stability, and time are important.

Example 1.4: The goal of a traffic controller is to minimize waiting time and to save
energy. The engineer must understand the civil engineering of how city streets are laid out
and the behavior of human drivers as they interact with traffic lights and other drivers. The
controller uses sensors to know the number of cars traveling on each segment of road.
Pedestrians can also push walk buttons. The controller will accept input commands from
the fire or police department to handle emergencies. The outputs are the traffic lights at
each intersection. The controller collects sensor inputs and calculates the traffic pattern
needed to minimize waiting time, while maintaining safety. Traffic controllers are not real-
time systems, because human safety is not sacrificed if a request is delayed. In contrast, an
air traffic controller must run in real time, because safety is compromised if a response to
a request is delayed. The system must be able to operate under extreme conditions such as
rain, snow, freezing temperature, and power outages. Computational speed and
sensor/light reliability are important.

Checkpoint 1.10: There is a microcontroller embedded in an alarm clock. List three
operations the software must perform.

When designing embedded systems we need to know how to interface a wide range of
signals that can exist in digital, analog, or time formats.

Table 1.3 lists example products and the functions performed by their embedded systems.
The microcontroller accepts inputs, performs calculations, and generates outputs.



Functions performed by the microcontroller

Consumer/Home:

Washing machine
and energy

Exercise equipment

Remote controls

how to interact with user

Clocks and watches
Games and toys
Audio/video

Controls the water and spin cycles, saving water

Measures speed, distance, calories, heart rate

Accepts key touches, sends infrared pulses, learns

Maintains the time, alarm, and display
Entertains the user, joystick input, video output

Interacts with the operator, enhances

performance with sounds and pictures

Set-back thermostats
Communication:

Answering machines
messages

Telephone system

Cellular phones
speaker

Satellites
Automotive:
Automatic braking
Noise cancellation
Theft deterrent devices
Electronic ignition
Windows and seats
Instrumentation
Military:
Smart weapons
Missile guidance

Global positioning

Adjusts day/night thresholds saving energy

Plays outgoing messages and saves incoming

Switches signals and retrieves information

Interacts with key pad, microphone, and

Sends and receives messages

Optimizes stopping on slippery surfaces
Improves sound quality, removing noise
Allows keyless entry, controls alarm
Controls sparks and fuel injectors
Remembers preferred settings for each driver

Collects and provides necessary information

Recognizes friendly targets
Directs ordnance at the desired target

Determines where you are on the planet, suggests



