

Kate	Campbell

Getting	Started	with	GIS

BookRix	GmbH	&	Co.	KG
81669	Munich

Table	Of	Contents

Table	of	Contents

Chapter	1			So,	What	Exactly	is	a	GIS?

Chapter	2			The	Software

Chapter	3			Loading	Data	into	your	Database

Chapter	4			Spatial	SQL

Chapter	5			Creating	a	GIS	Application	in	.NET

Acronyms	and	Abbreviations

Detailed	Table	of	Contents

Introduction

Introduction
Geographic	 information	systems	(GIS)	are	all	around	us	 in	 this	day	and	age,

but	most	people,	even	developers,	are	not	aware	of	the	internals.	Many	of	us	use
GIS	 through	web-based	 systems	 such	 as	Google	Maps	 or	Bing	Maps;	 as	GPS
data	that	drives	maps	and	address	searches;	and	even	when	tracking	where	your
latest	parcel	from	Amazon	is.

The	world	of	GIS	uses	a	complex	mix	of	cartography,	statistical	analysis,	and
database	 technology	 to	 power	 the	 internals	 that	 drive	 all	 the	 popular	 external
applications	we	all	use	and	enjoy.	In	this	guide	I’ll	be	showing	you	the	internals	of
this	world	and	also	how	 it	applies	 to	 .NET	developers	who	may	be	 interested	 in
using	some	GIS	features	in	their	latest	application.

Chapter	1	So,	What	Exactly	is	a	GIS?

Chapter	1		So,	What	Exactly	is	a	GIS?
To	most	 people,	 what	 they	 see	 as	 a	GIS	 is	 in	 fact	 just	 the	 front-end	 output

layer,	such	as	 the	maps	produced	 in	Google	Maps,	or	 the	screen	on	a	TomTom
navigation	device.	The	reality	of	it	all	extends	far	beyond	that;	the	output	layer	is
very	often	 the	end	 result	 of	many	 interconnecting	programs	along	with	massive
amounts	of	data.

A	 typical	 GIS	 will	 include	 desktop	 applications	 used	 to	 visualize,	 edit,	 and
manage	the	data,	several	different	types	of	backend	databases	to	store	the	data,
and	in	many	cases	a	huge	amount	of	custom	written	software	tools.	In	fact,	GIS	is
one	of	 the	 top	 industries	where	 a	 programmer	 can	expect	 to	write	 a	 very	 large
amount	of	custom	tooling	not	available	from	other	companies.

We’ll	explore	some	of	the	applications	in	detail	soon,	but	for	now	we’ll	continue
with	the	100-foot	view.	A	typical	GIS	processing	setup	will	look	something	like	the
following:

Figure	1:	Typical	GIS	processing	setup

As	you	can	see	in	the	diagram,	the	central	part	is	very	often	the	database	itself
with	 a	 huge	 number	 of	 inputs	 and	 processing	 steps.	 Finally,	 the	 output	 layers
(shown	in	red)	are	what	people	usually	associate	with	being	a	GIS.

Based	 on	 this,	 we	 can	 see	 that	 the	 database	 is	 the	 center	 of	 the	 universe
when	it	comes	to	GIS.

A	Breakdown	of	the	Components

A	Breakdown	of	the	Components
Looking	 at	 the	 diagram	 in	 Figure	 1,	we	 can	 see	 that	 there	 are	 a	 number	 of

parts	 that	 have	 specific	meanings.	We	have	our	 inputs	 (blue),	 outputs	 (red),	 in-
place	processing	(green),	and	end	processing	(purple).	At	this	point	you	might	be
asking	 yourself,	 “How	 is	 this	 different	 from	any	other	 data-centric	 system	 I	 deal
with?”	and	you’d	be	 right	 to	do	so.	The	main	difference	here	 is	 that	 in	a	 typical
GIS,	you	have	to	design	everything	in	each	component	from	the	very	beginning.
With	a	regular	data-centric	system,	many	of	the	components	are	often	optional	or
are	combined	into	multifunctional	components.

For	 a	 typical	 GIS,	 none	 of	 what	 you	 see	 in	 Figure	 1	 is	 optional,	 except	 for
possibly	your	inputs.	Even	then,	the	components	you’ll	most	likely	see	omitted	are
manual	and	historical	data.

So	what	do	these	separate	entities	entail,	and	why	are	they	often	not	optional?

External	Data	Collection
As	the	name	suggests,	this	is	the	process	of	gathering	external	data	specific	to

the	system	being	designed.	Typically	this	will	come	from	custom	devices	running
custom	software	(often	embedded	or	small	scale)	designed	to	create	input	data	in
a	very	specific	 form	 for	 the	system	 it	 is	being	used	 in.	The	 lack	of	any	 in-place
processing	 generally	 means	 the	 data	 produced	 is	 in	 a	 format	 that	 is	 already
acceptable	in	the	setup.

This	 component	 is	 typically	 satisfied	 by	many	 diverse	 pieces	 of	 technology,
and	in	most	cases	requires	some	training	to	use	correctly.	You’ll	often	see	things
like	 digital	 surveying	 equipment	 or	 specialized	 GPS	 devices	 fitted	 to	 vehicles,
which	 in	many	 cases	will	 often	 feed	 data	 back	 in	 real	 time	 using	 some	 kind	 of
radio	connection.

Static	Data	Production
Like	external	data,	 this	process	normally	gathers	data	 in	a	specific	format	for

the	system	it	is	being	used	in.	Unlike	external	data	however,	you	will	generally	find
that	static	data	is	produced	in-house	by	scanning	existing	paper	maps	or	digitizing
features	from	existing	building	plans,	for	instance.

Like	external	 inputs,	static	data	 is	often	produced	using	custom	software	and
processes	specific	to	the	business.

Historical	Data
Because	of	the	size	and	amount	of	data	produced	in	a	typical	GIS	setup,	there

is	 often	 a	 need	 to	 back	 up	 data	 into	 a	 separate	 archival	 system	 while	 still
maintaining	 the	 ability	 to	 work	 with	 it	 if	 needed.	 Often,	 data	 of	 this	 nature	 is
created	by	planning	authorities	showing	things	like	land	use	over	time	or	recording

where	specific	points	of	interest	are.	This	is	treated	as	a	separate	input	because
the	data	is	usually	read	only,	and	similarly	to	external	and	static	data,	was	at	one
time	produced	specifically	for	the	system.

Manual	Data	Loading
While	the	name	of	this	type	of	 input	may	suggest	the	same	as	external	data,

the	actual	data	obtained	in	this	step	is	usually	very	different.	Data	coming	into	the
system	via	this	input	will	often	be	in	the	form	of	pre-provided	data	from	a	GIS	data
provider.	In	the	United	Kingdom,	this	will	often	mean	data	provided	by	companies
like	 Ordnance	 Survey.	 In	 the	 United	 States,	 this	 might	 mean	 data	 provided	 by
institutions	 such	 as	 the	 U.S.	 Geological	 Survey	 or	 TIGER	 data	 from	 the	 U.S.
Census	Bureau.

At	this	step,	wherever	data	is	obtained	from,	it’s	almost	guaranteed	that	it	will
need	to	be	 transformed	 into	a	 format	 that	 is	useable	 in	 the	GIS	 it’s	destined	 for.
More	 often	 than	 not,	 it	 will	 need	 to	 go	 through	 some	 kind	 of	 in-place	 process
before	it’s	useable	in	any	way.

Regular	SQL	Queries
Since	most	GIS	have	a	large	database	at	the	center	of	them,	SQL	still	plays	an

important	role	and	probably	always	will.	However,	in	GIS	terms,	these	queries	not
only	 involve	 the	 normal	 SQL	 that	 you’re	 used	 to	 seeing	 in	 a	 database
management	 system,	 but	 also	 geospatial	 SQL.	We’ll	 cover	 GIS-specific	 SQL	 a
little	 later	on;	 for	now,	 inputs	here	are	usually	generated	 from	 things	 like	search
queries.

As	an	example,	when	you	type	the	name	of	a	place	or	a	ZIP	code	into	Google,
Bing,	 or	Yahoo	Maps,	 the	web	application	 you’re	 looking	at	will	most	 likely	 turn
your	 search	 into	a	query	 that	 uses	geospatial	SQL	 to	examine	data	 in	 the	 core
database.	 This,	 in	 turn,	 will	 be	 combined	 with	 other	 processes	 to	 produce	 an
output,	 which	 in	 this	 case	 will	 usually	 be	 a	 map	 displaying	 the	 location	 you
searched	 for.	Another	 example	might	 be	 an	 operator	 in	 an	 emergency	 services
control	 room	 entering	 the	 location	 of	 an	 incident,	 and	 combining	 that	 with	 the
known	locations	of	nearby	emergency	vehicles	to	aid	in	making	a	decision	as	to
which	vehicle	to	send	to	the	incident.

Location-Aware	Inputs
The	last	input	type	is	probably	the	one	that	is	familiar	to	most	people.	Location-

aware	 data	most	 often	 comes	 from	 the	GPS	 input	 on	 a	mobile	 phone	 or	 other
GPS-enabled	 device.	 It	 is	 generally	 common	 latitude	 and	 longitude	 information.
We’ll	cover	this	more	when	discussing	NMEA	data.

Graphical	Outputs
Now	we	move	to	the	output	layers,	the	first	of	which	is	the	graphical	one	and

what	most	people	are	familiar	with.	Output	data	here	is	very	often	in	the	form	of	a
raster-based	map	with	all	operations	performed	to	produce	a	single	output	tile	in

the	 form	of	 a	 standard	bitmap	 (such	as	a	 .jpeg).	However,	 far	more	 is	 involved
than	 simple	 map	 tiles.	 Graphical	 outputs	 can,	 and	 very	 often	 are,	 produced	 in
various	vector	formats,	or	as	things	like	AutoCAD	drawings	for	loading	into	a	CAD
or	modeling	package.	In	fact,	even	in	web	environments	where	people	are	used	to
seeing	bitmap	 tiles,	 it’s	common	for	graphical	output	 to	 take	 the	 form	of	SVG	or
KML	data	combined	with	a	custom	Google	Maps	object.	Raster	tiles	are	just	the
tip	of	the	iceberg.

Statistical	Outputs
Outputs	 in	 this	group	are	 the	complete	opposite	of	graphical	outputs.	Data	 is

often	the	by-product	of	several	GIS–SQL	operations	based	on	the	input	data	and
processes	going	on	within	the	system.	Just	like	general	database	data,	from	this
output	 you’ll	 get	 facts	 and	 figures	 that	 can	 be	 used	 to	 report	 statistics	 to
management	or	marketing	teams.	The	reason	we	treat	this	separately,	however,	is
because	of	the	nature	of	the	information.

While	you	might	be	tempted	to	just	say,	“It’s	only	numbers,”	in	some	cases	it’s
numbers	 that	have	no	meaning	unless	 there	 is	some	GIS	 input	 involved.	As	an
example,	 let’s	say	we	have	a	number	of	geographic	areas	 representing	plots	of
land,	and	with	each	of	those	areas	we	have	a	monetary	value	for	that	plot.

We	 can	 easily	 say,	 “Give	 me	 the	 values	 of	 each	 plot	 in	 descending	 order,”
enabling	 you	 to	 see	which	 is	 the	most	 expensive	 piece	 of	 land	 overall.	 This	 is
where	 the	 difference	 stops,	 however.	 Let’s	 say	we	 now	 know	 that	 all	 land	 in	 a
district	has	a	1%	tax	for	every	square	meter	a	plot	consumes.	We	know	by	looking
at	 a	 graphical	 output	 of	 the	map	 that	 the	 visually	 bigger	 areas	 are	 going	 to	 be
more	expensive,	but	you	can’t	convey	that	to	a	computer.

You	 can,	 however,	 ask	 using	GIS–SQL	 for	 a	 statistical	 analysis	 based	 on	 a
percentage	of	the	land’s	plot	value	multiplied	by	however	many	square	meters	are
in	the	defined	area	boundary.

Manual	Processing	Software
Anything	in	the	system	that	requires	an	operator	and	some	software	to	make

changes	falls	under	the	category	of	manual	processing	software.	Typically,	this	is
both	an	 input	and	an	output	because	 in	most	cases	this	 involves	changes	being
made	to	the	underlying	data	manually.

This	 is	usually	 the	area	where	you’ll	see	 large	GIS	packages	such	as	ESRI,
DigitalGlobe,	and	MapInfo	used.	We’ll	cover	some	of	 these	 later.	An	example	of
what	 might	 be	 performed	 at	 this	 stage	 is	 boundary	 editing.	 Let’s	 say	 that	 you
added	 some	 town	 boundaries	 as	 area	 definitions	 several	 years	 ago,	 and	 since
they	were	first	added	the	towns	have	increased	in	size.	You	would	then	find	a	GIS
expert	who,	with	his	or	her	chosen	software	and	some	satellite	imagery,	would	edit
your	boundary	data	so	that	its	definition	better	fits	the	newly	expanded	imagery.

Automatic	Processing	Software

Operations	 running	at	 this	stage	are	generally	not	much	different	 than	 those
being	 run	 manually.	 The	 reason	 we	 see	 a	 clear	 separation	 is	 because	 some
processes	simply	cannot	be	automated	and	need	a	human	eye	to	pick	out	details.
Going	 back	 to	 our	 previous	 example	 of	 the	 town	 boundaries,	 it’s	 not	 beyond
imagination	 that	 a	 process	 can	 be	 defined	 to	 analyze	 an	 aerial	 image	 and
determine	if	boundaries	need	to	be	removed.

Most	often,	however,	automatic	editing	 is	used	 to	perform	tasks	such	as	drift
correction	or	height	and	contour	changes	due	to	earth	movement.

Transformation	Tasks
As	mentioned	in	the	discussion	of	manual	data	input,	when	obtaining	data	for

incorporation	into	a	GIS,	the	data	will	rarely	be	in	a	format	suitable	for	inclusion	in
the	system.

Making	 the	 data	 usable	 may	 involve	 something	 as	 simple	 as	 a	 coordinate
transform,	 or	 something	 as	 complex	 as	 combining	 multiple	 datasets	 based	 on
common	 attributes	 and	 more.	 Transformation	 processes	 can	 and	 often	 do
seriously	affect	the	overall	data	quality,	and	many	systems	can	end	up	with	a	lot	of
deeply	rooted	problems	caused	by	mistakes	when	transforming	data.

In	 the	 U.K.,	 these	 processes	 are	 almost	 always	 seen	 when	 working	 with
latitude	 and	 longitude	 coordinates,	 as	 nearly	 all	 the	 data	 supplied	 by	 U.K.
authorities	will	be	in	meters	from	the	origin,	rather	than	degrees	around	the	center.

Combinational	Processing
Combinational	processing	is	generally	in-place	processing	that	is	the	result	of

various	 input	 operations.	 It’s	 not	 too	 different	 from	 using	 a	 join	 in	 a	 regular
database	operation.	The	result	is	a	combination	of	processes	and	input	data	steps
that	ultimately	work	in	real	time	to	produce	a	defined	input	data	set.

Pre-Output
Last	but	not	least	is	the	pre-output	step.	As	the	name	suggests,	this	is	the	final

processing	 required	 before	 the	 output	 is	 useable.	 A	 pre-output	 process	 may
include	 transforming	 an	 internal	 coordinate	 system	 to	 a	 more	 global	 one;	 for
example,	U.K.	meters	back	to	a	global	scale,	or	converting	a	batch	of	statistics	to
a	different	range	of	values.	Location-aware	inputs	are	often	included	in	this	step,
typically	 in	 a	 navigation	 system.	 For	 example,	 a	 location’s	 graphical
representation	could	be	combined	with	current	mapping	to	produce	a	visual	output
for	a	tracking	map.

The	Database

The	Database
So	 just	 what	 makes	 a	 GIS	 database	 so	 different	 from	 a	 normal	 database?

Honestly,	not	much.	A	GIS	database	is	simply	specialized	for	a	particular	task.

A	better	way	to	illustrate	what	makes	a	GIS	database	unique	is	to	look	at	the
growing	world	of	big	data.	These	days,	it’s	hard	not	to	notice	how	much	noise	is
being	 made	 by	 NoSQL	 and	 document-centric	 database	 providers.	 These	 new-
breed	 databases	 fundamentally	 do	 the	 same	 things	 as	 a	 normal	 database,	 but
use	 specialized	 processes	 that	 perform	 particular	 operations	 in	 better,	 more
efficient	ways.

Looking	 at	 a	 GIS	 database	 through	 the	 lens	 of	 a	 non-GIS	 connection,	 the
geometric	 data	 is	 nothing	 more	 than	 a	 custom	 binary	 field,	 or	 blob,	 that	 the
software	and	processes	working	with	the	system	know	how	to	interpret.	In	fact,	it’s
possible	to	take	a	normal	database	engine	and	write	your	own	routines,	either	in
the	database	or	in	external	code,	to	perform	all	of	the	usual	operations	you	would
expect	but	with	GIS	data.

In	general,	when	a	database	is	spatially	enabled,	it	will	have	much	more	than
just	the	ability	to	understand	the	binary	data	added	to	it.	There	will	be	extensions
to	the	SQL	language	for	performing	specialized	GIS	data	operations,	new	types	of
indexes	 to	 help	 accelerate	 lookups,	 and	 various	 new	 tables	 used	 to	 manage
metadata	pertaining	to	the	various	types	of	GIS	data	you	may	need	to	store.

I’m	 not	 going	 to	 list	 every	 available	 operation	 in	 this	 book,	 only	 the	 most
important	things	you	need	to	know	to	get	started.	At	last	count,	however,	there	are
more	than	300	different	functions	in	the	last	published	OGC	standards.

OGC	What?
The	 OGC	 standards	 are	 the	 recommendations	 set	 by	 the	 Open	 Geospatial

Consortium.	They	define	a	common	API,	a	minimum	set	of	GIS–SQL	extensions,
and	other	 related	objects	 that	any	GIS-enabled	database	must	 implement	 to	be
classified	as	OGC	compliant.	Because	of	the	diversity	of	GIS	and	their	data,	these
standards	are	 rigorously	enforced.	This	enables	nearly	every	bit	of	GIS-enabled
software	on	the	planet	to	talk	to	any	GIS-enabled	database	and	vice	versa	using	a
common	language.

Note	that	when	selecting	a	database	to	use,	 there	are	many	that	claim	to	be
spatially	 aware	 but	 are	 not	 OGC	 compliant.	 Prime	 examples	 are	MS	 SQL	 and
MySQL.

In	 general,	 MS	 SQL	 features	 the	 OGC-ratified	 minimum	 GIS–SQL	 and
functional	implementation,	but	its	calling	pattern	varies	significantly	from	most	GIS
software.	 MS	 SQL	 also	 features	 changes	 to	 column	 names	 in	 some	 of	 the

metadata	 tables,	which	means	most	standard	GIS	software	cannot	 talk	 to	a	MS
SQL	server.	Note	also	that	MS	SQL	didn’t	add	any	kind	of	GIS	extensibility	until
2008,	and	even	in	the	newer	2008	R2	and	2012	versions,	the	GIS	side	of	things	is
still	not	completely	OGC	compliant.

MySQL	 has	 similar	 restrictions,	 but	 also	 treats	 a	 number	 of	 core	 data	 types
very	 differently,	 often	 leading	 to	 rounding	 errors	 and	 other	 anomalies	 when
performing	 coordinate	 conversions.	 You	 can	 find	 the	 full	 list	 of	 OGC	 standards
documents	on	the	OCG	website	at	http://www.opengeospatial.org/standards/is.

A	 good	 place	 to	 look	 for	 information	 comparing	 various	 databases	 is	 on	 the
BostonGIS	 website	 at	 http://www.bostongis.com/?
content_name=sqlserver2008r2_oracle11gr2_postgis15_compare#221.

There	 are	 also	 a	 number	 of	 other	 good	 starter	 articles	 on	 the	 site.	 The
downside	is	that	the	site	is	cluttered	and	sometimes	very	hard	to	read.

The	Metadata	Tables
All	 OGC-compliant	 GIS	 databases	 must	 support	 two	 core	 metadata	 tables

called	geometry_columns	and	spatial_ref_sys.	Most	GIS-enabled	software	will
use	 the	 existence	 of	 these	 tables	 to	 determine	 if	 it	 is	 talking	 to	 a	 genuine	GIS
database	system.	If	these	tables	don’t	exist,	the	software	will	often	exit.

A	 good	 example	 of	 this	 was	 with	 early	 versions	 of	 MySQL	 where	 the	 table
names	 were	 reserved	 by	 the	 database	 engine,	 but	 did	 not	 physically	 exist	 as
tables.	This	would	cause	the	MapInfo	application	to	attempt	to	create	the	missing
tables,	 but	 it	 would	 receive	 an	 error	 on	 trying	 doing	 so,	 thus	 preventing	 the
database	from	being	used	correctly	by	the	software.

The	geometry_columns	 table	 is	used	to	record	which	table	columns	in	your
database	contain	geospatial	 data	along	with	 their	 data	 type,	 coordinate	 system,
dimensions,	and	a	few	other	items	of	related	information.

The	spatial_ref_sys	table	holds	a	list	of	known	spatial	reference	systems,	or
coordinate	systems	as	they	may	be	better	known.	These	coordinate	systems	are
what	 define	 geographic	 locations	 in	 any	 GIS	 database;	 they	 are	 the	 glue	 that
allows	 all	 the	 functionality	 to	 work	 together	 flawlessly,	 even	 with	 data	 that	may
have	 come	 from	 different	 sources	 or	 been	 recorded	 using	 different	 geographic
coordinate	systems.

The	entries	 in	 the	spatial_ref_sys	 table	are	 indexed	by	a	number	known	as
the	 EPSG	 ID.	 The	 EPSG,	 or	 European	 Petroleum	 Survey	Group,	 is	 a	 working
group	of	energy	suppliers	from	the	oil	and	gas	industry	who	confronted	a	common
problem	that	arose	when	surveying	the	world’s	oceans	for	oil	reserves:	positioning
on	a	global	scale.	Some	companies	used	one	scale,	others	used	a	different	scale;
some	used	a	global	coordinate	system,	while	others	used	a	local	one.

The	group’s	solution	was	to	record	the	differences	between	each	scale	and	the
information	required	to	convert	from	one	scale	to	another	reliably	without	any	loss

of	precision.

Today,	every	GIS	database	that	claims	to	be	OGC	compliant	 includes	a	copy
of	 this	 table	 to	 ensure	 that	 data	 conversions	 from	 one	 system	 to	 another	 are
performed	with	as	much	accuracy	as	possible.

We’ll	cover	the	actual	coordinate	systems	a	little	later	in	the	book.	For	now,	all
you	really	need	to	be	aware	of	is	that	if	the	spatial_ref_sys	table	does	not	exist	or
has	 no	 data	 in	 it,	 you	 will	 be	 unable	 to	 accurately	 map	 or	 make	 real-world
translations	of	any	data	you	possess.

Also	note	 that	 it	 is	 possible	 to	 save	space	by	 removing	unnecessary	entries
from	 this	 table.	 If	 your	 data	 only	 ever	 uses	 two	 or	 three	 different	 coordinate
systems,	 it’s	perfectly	acceptable	to	remove	the	rest	of	 the	entries	to	reduce	the
size	of	the	table.	This	can	be	especially	useful	when	working	with	mobile	devices.

If	you	only	work	with	data	in	your	own	range	of	values,	arguably	there	can	be
no	data	in	the	spatial_ref_sys	table	at	all.	I	would,	however,	caution	you	against
removing	the	table	entirely.	As	previously	mentioned,	most	GIS	software	will	look
for	the	presence	of	this	and	the	geometry_columns	table	to	signify	the	existence
of	a	GIS-enabled	database.

What’s	Actually	in	the	Metadata	Tables?
The	geometry_columns	table	holds	data	pertaining	to	your	data	and	has	the

following	fields:

f_table_catalog

The	database	name	the	table	is	defined	in.

f_table_schema

The	schema	space	the	table	is	defined	in.

f_table_name

The	name	of	the	table	holding	the	data.

f_geometry_column

The	name	of	the	column	holding	the	actual	data.

coord_dimension

The	coordinate	dimension.

srid

The	spatial	reference	ID	of	the	coordinate	system	in	use.

type

The	type	of	geometry	data	stored	in	this	table.

The	catalog,	schema,	and	name	fields	are	used	in	different	ways	by	different

databases.	Oracle	Spatial,	 for	 example,	 has	 a	 single	geometry_columns	 table
used	 for	 the	 entire	 server,	 so	 the	 catalog	 field	 is	 used	 to	 name	 the	 actual
database.	 Postgres,	 however,	 stores	 one	 geometry_columns	 table	 per
database,	 so	 the	 catalog	 field	 will	 usually	 be	 empty.	 On	 the	 other	 hand,	 the
schema	 field	 is	 used	 in	 both	 Postgres	 and	 MS	 SQL.	 In	 Postgres,	 the	 field	 is
usually	set	to	public,	whereas	in	MS	SQL	it’s	normally	set	to	dbo	for	the	publicly
accessible	table	set.

The	table	name	and	column	name	are	pretty	self-explanatory.	The	coordinate
dimension	in	most	cases	will	be	2,	meaning	that	the	coordinate	system	has	only	x-
coordinates	 and	 y-coordinates.	 Postgres	 and	 Oracle	 Spatial	 do	 have	 3-D
capabilities,	 but	 I’ve	 yet	 to	 see	 them	 used	 very	 much	 outside	 of	 very	 specific
circumstances,	 and	 I’ve	 never	 seen	 a	 coord_dimension	 field	 set	 to	 anything
other	than	2.

We’ll	cover	the	srid	 field	in	just	a	moment.	The	type,	however,	needs	further
explanation.

Database	Geometry	Types
Any	OGC-compliant	database	has	to	be	able	 to	store	 three	different	 types	of

primitives.	They	are:

point
line
polygon

The	names	themselves	are	fairly	explanatory.	A	point	is	a	single	x,	y	location.
A	 line	 is	 a	 single	 segment	 connected	 by	 two	 x,	y	 end	 points.	 A	 polygon	 is	 an
enclosed	area	where	a	number	of	x,	y	points	form	a	closed	perimeter.

However,	 the	 three	 base	 types	 are	 not	 the	 only	 geometry	 types	 you’ll	 work
with.	There	are	variations	such	as:

linestring
multilinestring
multipolygon

Plus	a	few	others	that	are	rarely	used.

A	linestring	can	be	thought	of	as	a	collection	of	line	objects	where	each	point,
except	 for	 the	start	and	end	points,	 is	 the	same	as	 the	start	or	end	point	of	 the
adjacent	line.	For	example:

1,2	2,3	3,4

would	be	a	linestring	that	starts	at	1,2,	goes	through	two	segments,	and	ends
at	3,4.

A	multilinestring	can	be	thought	of	as	a	collection	of	linestrings.	For	example:

(1,2	2,3	3,4)	(6,7	7,8	8,9)

would	 be	 two	 linestrings	 running	 from	 1,2	 to	 3,4,	 and	 from	 6,7	 to	 8,9,	 each
consisting	of	two	segments.	The	two	linestrings	would	have	a	gap	between	them.

A	multipolygon,	as	the	name	suggests,	 is	a	collection	of	polygons,	but	with	a
twist.	Polygon	definitions	cannot	overlap	if	they	are	in	the	same	graphical	object.
This	is	illustrated	in	Figures	3	and	4.

Figure	2:	Valid	Multipolygon

Figure	3:	Invalid	Multipolygon

A	 multipolygon	 must	 contain	 at	 least	 one	 polygon	 that	 encloses	 all	 other
polygons	 in	 the	 set.	 This	 is	 known	as	 the	outer	 ring.	Within	 this	 boundary,	 the
other	polygons	often	form	holes	 in	 the	outer	ring.	This	 is	used	for	building	plans
with	 courtyards,	 road	 layouts	 with	 roundabouts,	 anything	 where	 an	 enclosed
section	needs	to	be	removed	from	the	internal	area	of	the	defined	shape.

Many	 spatial	 databases,	 however,	 will	 define	 even	 single	 polygons	 as
multipolygons.	This	is	done	so	that	it’s	easy	to	insert	cutouts	if	needed	at	a	later
time.

What	Types	Should	I	Use	for	My	Data?
The	data	types	you	use	depend	what	your	data	is	representing.	If	you	have	a

series	of	locations	representing	shops,	you’ll	most	likely	just	want	to	define	those
as	points.	If,	on	the	other	hand,	your	data	represents	roads	between	those	points,
a	 multilinestring	 is	 probably	 a	 better	 choice.	 If	 you	 want	 to	 mark	 the	 building
outlines	of	each	shop,	you’ll	want	to	use	a	polygon	or	multipolygon	depending	on
the	complexity	of	the	structure.

There	are	no	hard	and	fast	rules	for	data	types.	You	only	have	to	keep	in	mind
that	 if	 you	 don’t	 use	 a	 data	 type	 appropriate	 for	 the	 operations	 you	 expect	 to
perform,	you’re	almost	certain	to	end	up	with	errors	in	any	calculations	you	do.

Think	back	to	our	shops.	 If	you’re	searching	for	 the	 largest	one,	you	need	to
test	for	area,	and	you	can’t	test	for	area	using	a	single	point.	On	the	other	hand,	if
all	you	want	 to	do	 is	provide	a	searchable	map	for	a	customer	 to	 find	his	or	her
closest	shop,	you	don’t	need	to	store	more	data	than	you	need,	so	a	simple	point
will	do.

Enough	of	data	layout	for	now.	We’ll	come	back	to	it	in	a	while.	Let’s	continue
with	the	metadata	tables.

Metadata	Tables,	Part	2
As	 mentioned	 previously,	 the	 spatial_ref_sys	 metadata	 table	 holds

conversion	data	to	allow	conversions	from	one	coordinate	system	to	another.

Each	 entry	 in	 this	 table	 contains	 specific	 information	 such	 as	 units	 of
measurement,	 where	 the	 origin	 is	 located,	 and	 even	 the	 starting	 offset	 of	 a
measurement.

Most	of	us	are	familiar	with	seeing	a	coordinate	pair	such	as	this:

54.852726,	-1.832299

If	you	have	a	GPS	built	into	your	mobile	phone,	fire	it	up	and	watch	the	display.
You’ll	 see	 something	 similar	 to	 this	 coordinate	 pair.	 Note	 that	 on	 some	 devices
and	apps,	the	coordinates	may	be	swapped.

This	 coordinate	 pair	 is	 known	 as	 latitude	 and	 longitude.	 The	 first	 number,
latitude,	 is	 the	degrees	north	or	south	from	the	equator	with	north	being	positive
and	south	being	negative.	The	second	number,	 longitude,	is	the	degrees	east	or
west	of	the	Prime	Meridian	with	west	being	negative	and	east	being	positive.	The
correct	geospatial	name	for	this	coordinate	system	is	WGS84.	Its	SRID	number	is
4326	in	the	spatial_ref_sys	table.

We’ll	come	back	to	the	different	coordinate	systems	and	why	they	exist	in	just
a	moment.	 For	 now,	 let’s	 continue	 with	 the	 description	 of	 the	 spatial	 reference
table.	The	spatial_ref_sys	table	has	the	following	fields:

srid

The	spatial	reference	number	as	defined	by	the	OGC	standards.

auth_name

The	authenticating	body	for	this	SRID,	usually	the	EPSG.

auth_srid

The	SRID	as	defined	by	the	authenticating	body,	which	 is	normally	 the	same
as	the	SRID	defined	by	OGC	standards.

srtext

The	definition	text	used	to	map	the	spatial	difference	in	projcs	format.

proj4text

The	definition	text	used	to	map	the	spatial	difference	in	proj4	format.

Everything	 in	 the	 spatial	 reference	 table	 is	 straightforward	 types	 for	 integers
and	strings.	The	srtext	and	proj4text	have	different	meanings	depending	on	what
software	is	reading	them.

The	srtext	 field	 holds	 information	 for	 the	 projection,	 ellipsoid,	 spheroid,	 and
other	essential	 information	 that	allows	any	software	 to	be	able	 to	 translate	 from
one	coordinate	set	 to	another.	We’ll	cover	 this	a	 little	more	 later,	but	a	complete
description	of	everything	you	will	find	in	this	field	is	well	beyond	the	scope	of	this
small	 book.	 In	 fact,	 the	 smallest	 book	 I’ve	 seen	describing	 the	basics	was	over
500	pages!

The	proj4text	field	serves	a	similar	purpose	but	is	used	by	applications	using
the	open	source	Proj.4	library.

Proj.4	and	Geos	were	two	of	the	first	open	source	libraries	to	be	used	by	many
different	 spatial	 databases	 and	 GIS	 applications.	 These	 two	 libraries	 are	 now
used	in	close	to	100%	of	all	commercial	and	open	source	software	used	for	any
kind	 of	 spatial	 or	 GIS	 work.	 Both	 libraries	 are	 still	 actively	 maintained	 and	 are
available	for	every	platform	you	would	expect	to	work	with.	We’ll	meet	them	again
later	when	we	take	a	brief	look	at	some	of	the	GIS	software	available	for	the	.NET
developer.

For	now,	all	you	need	to	be	aware	of	is	that	in	order	to	support	different	spatial
coordinate	systems,	you	must	have	entries	in	the	spatial_ref_sys	table.

As	previously	mentioned,	you	don’t	need	every	entry	in	the	table;	you	can	get
by	using	only	the	SRIDs	that	your	geometry,	database,	and	software	use.	Since	I
live	in	the	U.K.,	I	typically	use:

OSGB36,	SRID:	27700—Ordnance	Survey,	meters	with	false	offset	at	origin.

and

WGS84,	 SRID:	 4326—Worldwide	 latitude/longitude,	 degrees	 with
minute/hour/seconds	 offset,	 origin	 at	 0	 degrees	 latitude	 (the	 equator)	 and	 0
degrees	longitude	(the	Prime	Meridian).

For	other	territories,	you	can	import	the	entire	table	and	see	which	works	best,

or	you	can	look	up	your	territory	on	the	EPSG	site	at	http://www.epsg-registry.org/
and	grab	only	 the	definitions	you	need.	 If	you	are	using	Postgres	or	PostGIS	as
your	 spatial	 database,	 the	 spatial_ref_sys	 table	 is	 populated	 in	 a	 database
template	 with	 all	 the	 known	 SRIDs	 available	 when	 you	 install	 the	 database.
Creating	your	own	databases	is	simply	a	matter	of	using	this	template	to	have	a
fully	populated	table	from	the	start.

One	 note	 of	 caution	 before	 we	 move	 on:	 some	 databases,	 while	 they	 do
support	 the	 geometry_columns	 and	 spatial_sys_ref	 metadata	 tables,	 don’t
create	them	by	default.	MS	SQL	2008	is	noted	for	this;	it	uses	its	own	methods	for
storing	spatial	metadata.	You	may	find	that	in	some	cases	you	will	be	required	to
create	 some	 of	 these	 tables	 manually	 before	 you	 can	 use	 your	 database.
Additionally,	you	may	also	 find	 that	some	databases	create	 the	 tables	but	use	a
slightly	different	naming	convention,	especially	for	the	geometry_columns	 table.
For	 this	 reason,	 it’s	always	better	 to	use	 the	official	OGC-compliant	spatial	SQL
command	 set	 (which	 can	 be	 downloaded	 from
http://www.opengeospatial.org/standards/sfs)	 to	 manipulate	 the	 data	 in	 these
tables,	rather	than	trying	to	manipulate	the	entries	directly.

Coordinate	and	Spatial	Location	Systems

Coordinate	and	Spatial	Location	Systems
Before	we	 can	get	 onto	 the	 technical	 fun	 stuff	 and	 start	 to	 play,	we	have	 to

cover	a	little	more	theory.	You	must	understand	why	all	these	different	SRIDs	and
coordinate	systems	exist.

I’d	like	to	send	you	merrily	on	your	way	into	your	first	GIS	adventure	right	now
and	say	 this	 stuff	 really	doesn’t	matter;	 however,	 the	 truth	 is	 I	 can’t	 and	 it	 does
matter.	In	fact,	it	matters	a	great	deal.

If	you	don’t	comprehend	this	coordinate	stuff	correctly,	it’s	possible	to	map	an
automobile’s	track	as	being	in	the	middle	of	the	Atlantic	Ocean.	While	this	may	not
matter	 for	 the	 application	 you’re	 working	 on—you	may	 be	 looking	 at	 a	 general
overview	 of	 customer	 dispersal,	 for	 example—you	 should	 still	 try	 to	make	 sure
your	application	is	as	accurate	as	it	can	possibly	be.

So	the	answer	to	the	million-dollar	question,	“Why	do	we	have	to	deal	with	all
this	coordinate	stuff?”	boils	down	to	one	thing,	and	one	thing	only:

The	Earth	is	not	flat.

There,	I	said	it.	And	all	naysayers	out	there	who	still	believe	it	is	need	to	build
themselves	a	top-notch	GIS	and	check	it	out.	

Jokes	 aside	 though,	 it’s	 the	 fact	 that	 our	 planet	 is	 a	 sphere	 that	 causes	 all
these	 coordinate	 system	headaches.	 To	make	matters	 even	worse,	 our	 humble
home	is	not	even	a	perfectly	round	sphere.	It’s	slightly	elongated	around	its	axis,	a
little	 like	 a	 rugby	 ball,	 but	 not	 quite	 as	 pronounced.	 This	 causes	 further
complications	because	the	math	we	need	to	use	as	we	look	at	positions	closer	to
the	poles	must	compensate	for	the	differences	in	the	Earth’s	curvature.

Degrees,	Minutes,	and	GPS
Okay,	 so	 how	 exactly	 do	we	 deal	 with	 this	 curvature?	 There	MUST	 be	 one

measurement	 that	makes	 sense	 throughout	 the	whole	 globe,	 right?	 If	 not,	 then
how	 on	 Earth	 do	 airplanes	 and	 ships	 navigate	 from	 country	 to	 country	 without
getting	lost	or	having	to	keep	track	all	of	these	different	SRIDs?

You’ll	 be	 pleased	 to	 know	 there	 is,	 but	 it’s	 not	 as	 straightforward	 as	 just
mapping	an	x	position	and	a	y	position	at	a	certain	place	on	the	globe.

If	 you	 look	 at	 any	 geography	 textbook	 or	world	map,	 you’ll	 see	 the	Earth	 is
divided	into	rectangles.	These	rectangles	are	formed	from	the	lines	of	latitude	and
longitude	that	make	up	our	planet’s	wireframe	model.	 It	 looks	something	like	the
following:

Figure	4:	Earth’s	wireframe	model

Each	 horizontal	 and	 vertical	 line	 represents	 one	 or	 more	 whole	 degrees
depending	 on	 the	 scale	 factor	 being	 used.	Minutes	 are	 then	 used	 to	 offset	 the
position	within	that	grid	square.

When	we	express	a	latitude	of	50°	25′	32″	N,	what	we	are	actually	saying	is	50
degrees	latitude,	plus	25	minutes	and	32	seconds	north	into	that	square,	in	simple
terms.	 There’s	 a	 little	 more	 complexity	 to	 it	 if	 truth	 be	 told,	 but	 unless	 you’re
navigating	 the	 high	 seas	 or	 piloting	 a	 commercial	 airliner,	 you’re	 probably	 not
going	to	need	to	go	into	that	much	detail.

The	same	works	for	longitude.	Everything	is	expressed	as	a	positive	number,
so	west	of	the	Prime	Meridian	is	suffixed	with	a	W,	and	everything	to	the	east	 is
suffixed	 with	 an	 E.	 Combining	 these	 with	 the	 north	 and	 south	 longitude
designations	divide	the	planet	into	four	quadrants	of	180	degrees	each.

How	is	this	of	any	relevance	to	the	GIS	developer?
If	 you’re	 looking	 to	 retrieve	 the	 data	 from	 any	 commercial-grade	 GPS,

particularly	those	built	into	mobile	phones,	you’ll	almost	always	come	face	to	face
with	 the	National	Marine	Electronics	Association	and	 its	standards	 for	electronic
navigation	devices	to	communicate,	known	as	the	NMEA	0183	standard.	Opening
the	GPS	port	on	just	about	any	device	will	produce	a	constant	stream	of	data	that
looks	very	similar	to	the	following:

$GPGGA,092750.000,5321.5802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76

$GPGSA,A,3,10,07,05,02,29,04,08,13,,,,,1.72,1.03,1.38*0A

$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70

$GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79

This	 data	 stream	 is	 the	 navigation	 data	 emitted	 by	 the	 GPS	 circuitry	 in	 the
device	in	response	to	what	it’s	able	to	receive	from	the	GPS	network	orbiting	the
Earth.	We’ll	come	back	to	this	in	more	detail	in	a	later	chapter.	For	now,	I’d	like	to
draw	your	attention	to	the	first	line	of	this	data,	specifically	the	following	entries:

5321.5802,N	and	00630.3372,W
These	 are	 the	 GPS’	 current	 location	 expressed	 as	 degrees	 and	 minutes.

Deciphering	them	is	not	hard	once	you	get	used	to	it,	but	it	can	be	a	little	strange
at	first.

The	 format	of	 the	string	 is	DDMM.mmmm	 for	 the	 latitude	 (vertical)	 direction
and	DDDMM.mmmm	for	the	longitude	(horizontal)	direction.

Starting	with	the	north	(latitude)	measurement	in	the	string,	the	first	two	digits
are	 the	 number	 of	 degrees,	 and	 the	 remaining	 numbers	 are	 the	 minutes.	 The
numbers	after	the	decimal	point	are	fractions	of	a	minute.	This	gives	us:

53	degrees,	21.5802	minutes	north
For	 the	 longitude	 measurement,	 the	 first	 three	 digits	 are	 the	 number	 of

degrees,	 and	 the	 remaining	 digits	 are	 the	 minutes.	 All	 the	 numbers	 after	 the
decimal	are	fractions	of	a	minute.	This	gives	us:

6	Degrees,	30.3372	minutes	west
Because	this	data	is	string	data,	it’s	essentially	an	exercise	in	cutting	the	string

at	specific	points	to	derive	the	values	you	want.	Once	you	have	them,	the	math	to
convert	them	to	the	more	familiar	latitude	and	longitude	(if	you	remember	that	was
WGS84)	format	is	very	simple.

First,	you	need	to	separate	the	first	two	digits	from	the	latitude	string	and	the
first	three	from	the	longitude.	This	gives	the	following:

53	and	21.5802	for	the	north	direction
006	and	30.3372	for	west
Because	there	are	60	minutes	in	a	degree,	we	must	divide	the	minutes	digits

by	sixty	to	find	what	fraction	of	a	degree	they	are,	and	then	combine	them	with	our
whole	degrees.	So,	for	our	latitude:

53	+	(21.5812/60)	will	give	you	53.359686	degrees.
And	for	our	longitude:

6	+	(30.3372/60)	will	give	you	6.505620	degrees.
You	get	simple	positions	from	the	numbers.	To	finish	the	conversion,	you	need

to	 apply	 the	 north	 and	 west	 directions	 as	 positive	 or	 negative	 numbers.	 The
easiest	way	to	manage	which	directions	are	positive	or	negative	is	to	change	any
west	 or	 south	 measurements	 to	 negative.	 So	 with	 our	 numbers,	 the	 final
coordinates	in	WGS84	latitude	and	longitude	are:

53.359686,	-6.505620
WGS84	 is	 a	 global	 coordinate	 system	standard,	 and	while	 it	 is	widely	 used,

using	it	for	everything	can	cause	some	problems.	Because	WGS84	is	designed	to
cover	 the	 globe,	 it’s	 designed	 also	 to	 be	 very	 lenient	 with	 the	 curvature	 of	 the
planet.	 Think	 back	 to	 the	wireframe	 globe	 in	 Figure	 4.	 Notice	 the	 shape	 of	 the
rectangles	as	they	near	the	top	of	the	globe.

You	can	see	in	the	diagram	that	the	rectangles	become	longer	and	narrower.
This	stretching	also	has	to	be	accounted	for	in	the	coordinate	system.	Over	long
distances,	it	can	cause	rounding	and	deviations	to	occur	in	your	data.

If	 you’re	 dealing	 with	 a	 territory	 where	 you	 only	 have	 a	 defined	 area	 of
operation,	using	a	coordinate	system	more	suited	to	that	area	is	the	preferred	way
of	working.	As	I	mentioned	previously,	for	me	here	in	the	U.K.	it’s	often	better	for
me	 to	convert	 these	WGS84	coordinates	 to	OSGB36	before	storing	 them	 in	my
database.	 As	 we’ll	 see	 later	 when	 we	 start	 looking	 at	 spatial	 SQL,	 your	 GIS
database	can	do	this	on	the	fly	when	set	up	correctly.

That’s	pretty	much	all	you	need	to	know	as	a	developer.	There’s	much	deeper
stuff	 you	 can	 dig	 into	 such	 as	 spheroid	 and	 airy	 calculations,	 geodetic
measurements,	 and	a	 lot	 of	 that	 trigonometry	 stuff	 from	school.	The	 fact	 is	 that
your	 GIS	 database	 and	 many	 of	 the	 tools	 you’ll	 use	 will	 actually	 do	 the	 vast
majority	 of	 the	 heavy	 lifting	 for	 you.	 So	 while	 having	 a	 good	 knowledge	 of	 the
actual	 formulas	used	by	the	systems	and	the	Proj.4	strings	may	be	interesting,	 I
assure	you	of	one	thing:	it	will	end	up	giving	you	a	brain	ache.

In	the	next	chapter,	we	start	to	move	onto	more	interesting	things,	starting	with
the	software	we’ll	be	using.

