

Kate Campbell

Getting Started with GIS

BookRix GmbH & Co. KG
81669 Munich

Table Of Contents

Table of Contents

Chapter 1 So, What Exactly is a GIS?
Chapter 2 The Software

Chapter 3 Loading Data into your Database
Chapter 4 Spatial SQL

Chapter 5 Creating a GIS Application in .NET
Acronyms and Abbreviations

Detailed Table of Contents

Introduction

Introduction

Geographic information systems (GIS) are all around us in this day and age,
but most people, even developers, are not aware of the internals. Many of us use
GIS through web-based systems such as Google Maps or Bing Maps; as GPS
data that drives maps and address searches; and even when tracking where your
latest parcel from Amazon is.

The world of GIS uses a complex mix of cartography, statistical analysis, and
database technology to power the internals that drive all the popular external
applications we all use and enjoy. In this guide I'll be showing you the internals of
this world and also how it applies to .NET developers who may be interested in
using some GIS features in their latest application.

Chapter 1 So, What Exactly is a GIS?

Chapter 1 So, What Exactly is a GIS?

To most people, what they see as a GIS is in fact just the front-end output
layer, such as the maps produced in Google Maps, or the screen on a TomTom
navigation device. The reality of it all extends far beyond that; the output layer is
very often the end result of many interconnecting programs along with massive
amounts of data.

A typical GIS will include desktop applications used to visualize, edit, and
manage the data, several different types of backend databases to store the data,
and in many cases a huge amount of custom written software tools. In fact, GIS is
one of the top industries where a programmer can expect to write a very large
amount of custom tooling not available from other companies.

We’'ll explore some of the applications in detail soon, but for now we’ll continue
with the 100-foot view. A typical GIS processing setup will look something like the
following:

Eé Server Groups

(= B Servers {3)

Refresh
Mew Database...

Reports J

Figure 1: Typical GIS processing setup

As you can see in the diagram, the central part is very often the database itself
with a huge number of inputs and processing steps. Finally, the output layers
(shown in red) are what people usually associate with being a GIS.

Based on this, we can see that the database is the center of the universe
when it comes to GIS.

A Breakdown of the Components

A Breakdown of the Components

Looking at the diagram in Figure 1, we can see that there are a number of
parts that have specific meanings. We have our inputs (blue), outputs (red), in-
place processing (green), and end processing (purple). At this point you might be
asking yourself, “How is this different from any other data-centric system | deal
with?” and you'd be right to do so. The main difference here is that in a typical
GIS, you have to design everything in each component from the very beginning.
With a regular data-centric system, many of the components are often optional or
are combined into multifunctional components.

For a typical GIS, none of what you see in Figure 1 is optional, except for
possibly your inputs. Even then, the components you’'ll most likely see omitted are
manual and historical data.

So what do these separate entities entail, and why are they often not optional?
External Data Collection

As the name suggests, this is the process of gathering external data specific to
the system being designed. Typically this will come from custom devices running
custom software (often embedded or small scale) designed to create input data in
a very specific form for the system it is being used in. The lack of any in-place
processing generally means the data produced is in a format that is already
acceptable in the setup.

This component is typically satisfied by many diverse pieces of technology,
and in most cases requires some training to use correctly. You'll often see things
like digital surveying equipment or specialized GPS devices fitted to vehicles,
which in many cases will often feed data back in real time using some kind of
radio connection.

Static Data Production

Like external data, this process normally gathers data in a specific format for
the system it is being used in. Unlike external data however, you will generally find
that static data is produced in-house by scanning existing paper maps or digitizing
features from existing building plans, for instance.

Like external inputs, static data is often produced using custom software and
processes specific to the business.

Historical Data

Because of the size and amount of data produced in a typical GIS setup, there
is often a need to back up data into a separate archival system while still
maintaining the ability to work with it if needed. Often, data of this nature is
created by planning authorities showing things like land use over time or recording

where specific points of interest are. This is treated as a separate input because
the data is usually read only, and similarly to external and static data, was at one
time produced specifically for the system.

Manual Data Loading

While the name of this type of input may suggest the same as external data,
the actual data obtained in this step is usually very different. Data coming into the
system via this input will often be in the form of pre-provided data from a GIS data
provider. In the United Kingdom, this will often mean data provided by companies
like Ordnance Survey. In the United States, this might mean data provided by
institutions such as the U.S. Geological Survey or TIGER data from the U.S.
Census Bureau.

At this step, wherever data is obtained from, it's almost guaranteed that it will
need to be transformed into a format that is useable in the GIS it's destined for.
More often than not, it will need to go through some kind of in-place process
before it's useable in any way.

Regular SQL Queries

Since most GIS have a large database at the center of them, SQL still plays an
important role and probably always will. However, in GIS terms, these queries not
only involve the normal SQL that youre used to seeing in a database
management system, but also geospatial SQL. We’'ll cover GIS-specific SQL a
little later on; for now, inputs here are usually generated from things like search
queries.

As an example, when you type the name of a place or a ZIP code into Google,
Bing, or Yahoo Maps, the web application you're looking at will most likely turn
your search into a query that uses geospatial SQL to examine data in the core
database. This, in turn, will be combined with other processes to produce an
output, which in this case will usually be a map displaying the location you
searched for. Another example might be an operator in an emergency services
control room entering the location of an incident, and combining that with the
known locations of nearby emergency vehicles to aid in making a decision as to
which vehicle to send to the incident.

Location-Aware Inputs

The last input type is probably the one that is familiar to most people. Location-
aware data most often comes from the GPS input on a mobile phone or other
GPS-enabled device. It is generally common latitude and longitude information.
We’'ll cover this more when discussing NMEA data.

Graphical Outputs

Now we move to the output layers, the first of which is the graphical one and
what most people are familiar with. Output data here is very often in the form of a
raster-based map with all operations performed to produce a single output tile in

the form of a standard bitmap (such as a .jpeg). However, far more is involved
than simple map tiles. Graphical outputs can, and very often are, produced in
various vector formats, or as things like AutoCAD drawings for loading into a CAD
or modeling package. In fact, even in web environments where people are used to
seeing bitmap tiles, it's common for graphical output to take the form of SVG or
KML data combined with a custom Google Maps object. Raster tiles are just the
tip of the iceberg.

Statistical Outputs

Outputs in this group are the complete opposite of graphical outputs. Data is
often the by-product of several GIS-SQL operations based on the input data and
processes going on within the system. Just like general database data, from this
output you'll get facts and figures that can be used to report statistics to
management or marketing teams. The reason we treat this separately, however, is
because of the nature of the information.

While you might be tempted to just say, “It's only numbers,” in some cases it's
numbers that have no meaning unless there is some GIS input involved. As an
example, let's say we have a number of geographic areas representing plots of
land, and with each of those areas we have a monetary value for that plot.

We can easily say, “Give me the values of each plot in descending order,”
enabling you to see which is the most expensive piece of land overall. This is
where the difference stops, however. Let's say we now know that all land in a
district has a 1% tax for every square meter a plot consumes. We know by looking
at a graphical output of the map that the visually bigger areas are going to be
more expensive, but you can’t convey that to a computer.

You can, however, ask using GIS-SQL for a statistical analysis based on a
percentage of the land’s plot value multiplied by however many square meters are
in the defined area boundary.

Manual Processing Software

Anything in the system that requires an operator and some software to make
changes falls under the category of manual processing software. Typically, this is
both an input and an output because in most cases this involves changes being
made to the underlying data manually.

This is usually the area where you’ll see large GIS packages such as ESRI,
DigitalGlobe, and Maplinfo used. We’'ll cover some of these later. An example of
what might be performed at this stage is boundary editing. Let's say that you
added some town boundaries as area definitions several years ago, and since
they were first added the towns have increased in size. You would then find a GIS
expert who, with his or her chosen software and some satellite imagery, would edit
your boundary data so that its definition better fits the newly expanded imagery.

Automatic Processing Software

Operations running at this stage are generally not much different than those
being run manually. The reason we see a clear separation is because some
processes simply cannot be automated and need a human eye to pick out details.
Going back to our previous example of the town boundaries, it's not beyond
imagination that a process can be defined to analyze an aerial image and
determine if boundaries need to be removed.

Most often, however, automatic editing is used to perform tasks such as drift
correction or height and contour changes due to earth movement.

Transformation Tasks

As mentioned in the discussion of manual data input, when obtaining data for
incorporation into a GIS, the data will rarely be in a format suitable for inclusion in
the system.

Making the data usable may involve something as simple as a coordinate
transform, or something as complex as combining multiple datasets based on
common attributes and more. Transformation processes can and often do
seriously affect the overall data quality, and many systems can end up with a lot of
deeply rooted problems caused by mistakes when transforming data.

In the U.K., these processes are almost always seen when working with
latitude and longitude coordinates, as nearly all the data supplied by U.K.
authorities will be in meters from the origin, rather than degrees around the center.

Combinational Processing

Combinational processing is generally in-place processing that is the result of
various input operations. It's not too different from using a join in a regular
database operation. The result is a combination of processes and input data steps
that ultimately work in real time to produce a defined input data set.

Pre-Output

Last but not least is the pre-output step. As the name suggests, this is the final
processing required before the output is useable. A pre-output process may
include transforming an internal coordinate system to a more global one; for
example, U.K. meters back to a global scale, or converting a batch of statistics to
a different range of values. Location-aware inputs are often included in this step,
typically in a navigation system. For example, a location’s graphical
representation could be combined with current mapping to produce a visual output
for a tracking map.

The Database

The Database

So just what makes a GIS database so different from a normal database?
Honestly, not much. A GIS database is simply specialized for a particular task.

A better way to illustrate what makes a GIS database unique is to look at the
growing world of big data. These days, it's hard not to notice how much noise is
being made by NoSQL and document-centric database providers. These new-
breed databases fundamentally do the same things as a normal database, but
use specialized processes that perform particular operations in better, more
efficient ways.

Looking at a GIS database through the lens of a non-GIS connection, the
geometric data is nothing more than a custom binary field, or blob, that the
software and processes working with the system know how to interpret. In fact, it's
possible to take a normal database engine and write your own routines, either in
the database or in external code, to perform all of the usual operations you would
expect but with GIS data.

In general, when a database is spatially enabled, it will have much more than
just the ability to understand the binary data added to it. There will be extensions
to the SQL language for performing specialized GIS data operations, new types of
indexes to help accelerate lookups, and various new tables used to manage
metadata pertaining to the various types of GIS data you may need to store.

I’'m not going to list every available operation in this book, only the most
important things you need to know to get started. At last count, however, there are
more than 300 different functions in the last published OGC standards.

OGC What?

The OGC standards are the recommendations set by the Open Geospatial
Consortium. They define a common API, a minimum set of GIS-SQL extensions,
and other related objects that any GIS-enabled database must implement to be
classified as OGC compliant. Because of the diversity of GIS and their data, these
standards are rigorously enforced. This enables nearly every bit of GIS-enabled
software on the planet to talk to any GIS-enabled database and vice versa using a
common language.

Note that when selecting a database to use, there are many that claim to be
spatially aware but are not OGC compliant. Prime examples are MS SQL and
MySQL.

In general, MS SQL features the OGC-ratified minimum GIS-SQL and
functional implementation, but its calling pattern varies significantly from most GIS
software. MS SQL also features changes to column names in some of the

metadata tables, which means most standard GIS software cannot talk to a MS
SQL server. Note also that MS SQL didn’'t add any kind of GIS extensibility until
2008, and even in the newer 2008 R2 and 2012 versions, the GIS side of things is
still not completely OGC compliant.

MySQL has similar restrictions, but also treats a number of core data types
very differently, often leading to rounding errors and other anomalies when
performing coordinate conversions. You can find the full list of OGC standards
documents on the OCG website at http://www.opengeospatial.org/standardsl/is.

A good place to look for information comparing various databases is on the
BostonGIS website at http://www.bostongis.com/?
content_name=sqlserver2008r2_oraclellgr2_postgisl5 compare#221.

There are also a number of other good starter articles on the site. The
downside is that the site is cluttered and sometimes very hard to read.

The Metadata Tables

All OGC-compliant GIS databases must support two core metadata tables
called geometry_columns and spatial_ref_sys. Most GIS-enabled software will
use the existence of these tables to determine if it is talking to a genuine GIS
database system. If these tables don’t exist, the software will often exit.

A good example of this was with early versions of MySQL where the table
names were reserved by the database engine, but did not physically exist as
tables. This would cause the Mapinfo application to attempt to create the missing
tables, but it would receive an error on trying doing so, thus preventing the
database from being used correctly by the software.

The geometry_columns table is used to record which table columns in your
database contain geospatial data along with their data type, coordinate system,
dimensions, and a few other items of related information.

The spatial_ref_sys table holds a list of known spatial reference systems, or
coordinate systems as they may be better known. These coordinate systems are
what define geographic locations in any GIS database; they are the glue that
allows all the functionality to work together flawlessly, even with data that may
have come from different sources or been recorded using different geographic
coordinate systems.

The entries in the spatial_ref_sys table are indexed by a number known as
the EPSG ID. The EPSG, or European Petroleum Survey Group, is a working
group of energy suppliers from the oil and gas industry who confronted a common
problem that arose when surveying the world’s oceans for oil reserves: positioning
on a global scale. Some companies used one scale, others used a different scale;
some used a global coordinate system, while others used a local one.

The group’s solution was to record the differences between each scale and the
information required to convert from one scale to another reliably without any loss

of precision.

Today, every GIS database that claims to be OGC compliant includes a copy
of this table to ensure that data conversions from one system to another are
performed with as much accuracy as possible.

We'll cover the actual coordinate systems a little later in the book. For now, all
you really need to be aware of is that if the spatial_ref_sys table does not exist or
has no data in it, you will be unable to accurately map or make real-world
translations of any data you possess.

Also note that it is possible to save space by removing unnecessary entries
from this table. If your data only ever uses two or three different coordinate
systems, it's perfectly acceptable to remove the rest of the entries to reduce the
size of the table. This can be especially useful when working with mobile devices.

If you only work with data in your own range of values, arguably there can be
no data in the spatial_ref_sys table at all. | would, however, caution you against
removing the table entirely. As previously mentioned, most GIS software will look
for the presence of this and the geometry_columns table to signify the existence
of a GIS-enabled database.

What's Actually in the Metadata Tables?

The geometry_columns table holds data pertaining to your data and has the
following fields:

f table catalog

The database name the table is defined in.

f table_schema

The schema space the table is defined in.

f table_name

The name of the table holding the data.

f geometry column

The name of the column holding the actual data.
coord_dimension

The coordinate dimension.

srid

The spatial reference ID of the coordinate system in use.
type

The type of geometry data stored in this table.

The catalog, schema, and name fields are used in different ways by different

databases. Oracle Spatial, for example, has a single geometry_columns table
used for the entire server, so the catalog field is used to name the actual
database. Postgres, however, stores one geometry columns table per
database, so the catalog field will usually be empty. On the other hand, the
schema field is used in both Postgres and MS SQL. In Postgres, the field is
usually set to public, whereas in MS SQL it's normally set to dbo for the publicly
accessible table set.

The table name and column name are pretty self-explanatory. The coordinate
dimension in most cases will be 2, meaning that the coordinate system has only x-
coordinates and y-coordinates. Postgres and Oracle Spatial do have 3-D
capabilities, but I've yet to see them used very much outside of very specific
circumstances, and I've never seen a coord_dimension field set to anything
other than 2.

We'll cover the srid field in just a moment. The type, however, needs further
explanation.

Database Geometry Types

Any OGC-compliant database has to be able to store three different types of
primitives. They are:

e point
e line
e polygon

The names themselves are fairly explanatory. A point is a single x, y location.
A line is a single segment connected by two X, y end points. A polygon is an
enclosed area where a number of x, y points form a closed perimeter.

However, the three base types are not the only geometry types you'll work
with. There are variations such as:

e linestring
e multilinestring
e multipolygon

Plus a few others that are rarely used.

A linestring can be thought of as a collection of line objects where each point,
except for the start and end points, is the same as the start or end point of the
adjacent line. For example:

1,22,33,4

would be a linestring that starts at 1,2, goes through two segments, and ends
at 3,4.

A multilinestring can be thought of as a collection of linestrings. For example:

(1,2 2,3 3,4) (6,7 7,8 8,9)

would be two linestrings running from 1,2 to 3,4, and from 6,7 to 8,9, each
consisting of two segments. The two linestrings would have a gap between them.

A multipolygon, as the name suggests, is a collection of polygons, but with a
twist. Polygon definitions cannot overlap if they are in the same graphical object.
This is illustrated in Figures 3 and 4.

Figure 2: Valid Multipolygon
Figure 3: Invalid Multipolygon

A multipolygon must contain at least one polygon that encloses all other
polygons in the set. This is known as the outer ring. Within this boundary, the
other polygons often form holes in the outer ring. This is used for building plans
with courtyards, road layouts with roundabouts, anything where an enclosed
section needs to be removed from the internal area of the defined shape.

Many spatial databases, however, will define even single polygons as
multipolygons. This is done so that it's easy to insert cutouts if needed at a later
time.

What Types Should | Use for My Data?
The data types you use depend what your data is representing. If you have a

series of locations representing shops, you’ll most likely just want to define those
as points. If, on the other hand, your data represents roads between those points,
a multilinestring is probably a better choice. If you want to mark the building
outlines of each shop, you'll want to use a polygon or multipolygon depending on
the complexity of the structure.

There are no hard and fast rules for data types. You only have to keep in mind
that if you don’t use a data type appropriate for the operations you expect to
perform, you're almost certain to end up with errors in any calculations you do.

Think back to our shops. If you're searching for the largest one, you need to
test for area, and you can’t test for area using a single point. On the other hand, if
all you want to do is provide a searchable map for a customer to find his or her
closest shop, you don’t need to store more data than you need, so a simple point
will do.

Enough of data layout for now. We’ll come back to it in a while. Let’s continue
with the metadata tables.

Metadata Tables, Part 2

As mentioned previously, the spatial_ref sys metadata table holds
conversion data to allow conversions from one coordinate system to another.

Each entry in this table contains specific information such as units of
measurement, where the origin is located, and even the starting offset of a
measurement.

Most of us are familiar with seeing a coordinate pair such as this:
54.852726, -1.832299

If you have a GPS built into your mobile phone, fire it up and watch the display.
You'll see something similar to this coordinate pair. Note that on some devices
and apps, the coordinates may be swapped.

This coordinate pair is known as latitude and longitude. The first number,
latitude, is the degrees north or south from the equator with north being positive
and south being negative. The second number, longitude, is the degrees east or
west of the Prime Meridian with west being negative and east being positive. The
correct geospatial name for this coordinate system is WGS84. Its SRID number is
4326 in the spatial_ref_sys table.

We’'ll come back to the different coordinate systems and why they exist in just
a moment. For now, let's continue with the description of the spatial reference
table. The spatial_ref_sys table has the following fields:

srid
The spatial reference number as defined by the OGC standards.

auth_name

The authenticating body for this SRID, usually the EPSG.
auth_srid

The SRID as defined by the authenticating body, which is normally the same
as the SRID defined by OGC standards.

srtext

The definition text used to map the spatial difference in projcs format.
projatext

The definition text used to map the spatial difference in proj4 format.

Everything in the spatial reference table is straightforward types for integers
and strings. The srtext and proj4dtext have different meanings depending on what
software is reading them.

The srtext field holds information for the projection, ellipsoid, spheroid, and
other essential information that allows any software to be able to translate from
one coordinate set to another. We'll cover this a little more later, but a complete
description of everything you will find in this field is well beyond the scope of this
small book. In fact, the smallest book I've seen describing the basics was over
500 pages!

The projdtext field serves a similar purpose but is used by applications using
the open source Proj.4 library.

Proj.4 and Geos were two of the first open source libraries to be used by many
different spatial databases and GIS applications. These two libraries are now
used in close to 100% of all commercial and open source software used for any
kind of spatial or GIS work. Both libraries are still actively maintained and are
available for every platform you would expect to work with. We’ll meet them again
later when we take a brief look at some of the GIS software available for the .NET
developer.

For now, all you need to be aware of is that in order to support different spatial
coordinate systems, you must have entries in the spatial_ref_sys table.

As previously mentioned, you don’t need every entry in the table; you can get
by using only the SRIDs that your geometry, database, and software use. Since |
live in the U.K., | typically use:

OSGB36, SRID: 27700—O0rdnance Survey, meters with false offset at origin.
and

WGS84, SRID: 4326—Worldwide latitude/longitude, degrees with
minute/hour/seconds offset, origin at 0 degrees latitude (the equator) and O
degrees longitude (the Prime Meridian).

For other territories, you can import the entire table and see which works best,

or you can look up your territory on the EPSG site at http://www.epsg-registry.org/
and grab only the definitions you need. If you are using Postgres or PostGIS as
your spatial database, the spatial_ref_sys table is populated in a database
template with all the known SRIDs available when you install the database.
Creating your own databases is simply a matter of using this template to have a
fully populated table from the start.

One note of caution before we move on: some databases, while they do
support the geometry_columns and spatial_sys ref metadata tables, don’t
create them by default. MS SQL 2008 is noted for this; it uses its own methods for
storing spatial metadata. You may find that in some cases you will be required to
create some of these tables manually before you can use your database.
Additionally, you may also find that some databases create the tables but use a
slightly different naming convention, especially for the geometry_columns table.
For this reason, it's always better to use the official OGC-compliant spatial SQL
command set (which can be downloaded from
http://www.opengeospatial.org/standards/sfs) to manipulate the data in these
tables, rather than trying to manipulate the entries directly.

Coordinate and Spatial Location Systems

Coordinate and Spatial Location Systems

Before we can get onto the technical fun stuff and start to play, we have to
cover a little more theory. You must understand why all these different SRIDs and
coordinate systems exist.

I'd like to send you merrily on your way into your first GIS adventure right now
and say this stuff really doesn’t matter; however, the truth is | can’t and it does
matter. In fact, it matters a great deal.

If you don’t comprehend this coordinate stuff correctly, it's possible to map an
automobile’s track as being in the middle of the Atlantic Ocean. While this may not
matter for the application you're working on—you may be looking at a general
overview of customer dispersal, for example—you should still try to make sure
your application is as accurate as it can possibly be.

So the answer to the million-dollar question, “Why do we have to deal with all
this coordinate stuff?” boils down to one thing, and one thing only:

The Earth is not flat.

There, | said it. And all naysayers out there who still believe it is need to build
themselves a top-notch GIS and check it out.

Jokes aside though, it's the fact that our planet is a sphere that causes all
these coordinate system headaches. To make matters even worse, our humble
home is not even a perfectly round sphere. It's slightly elongated around its axis, a
little like a rugby ball, but not quite as pronounced. This causes further
complications because the math we need to use as we look at positions closer to
the poles must compensate for the differences in the Earth’s curvature.

Degrees, Minutes, and GPS

Okay, so how exactly do we deal with this curvature? There MUST be one
measurement that makes sense throughout the whole globe, right? If not, then
how on Earth do airplanes and ships navigate from country to country without
getting lost or having to keep track all of these different SRIDs?

You'll be pleased to know there is, but it's not as straightforward as just
mapping an x position and a y position at a certain place on the globe.

If you look at any geography textbook or world map, you'll see the Earth is
divided into rectangles. These rectangles are formed from the lines of latitude and
longitude that make up our planet’s wireframe model. It looks something like the
following:

Figure 4: Earth’s wireframe model

Each horizontal and vertical line represents one or more whole degrees
depending on the scale factor being used. Minutes are then used to offset the
position within that grid square.

When we express a latitude of 50° 25" 32" N, what we are actually saying is 50
degrees latitude, plus 25 minutes and 32 seconds north into that square, in simple
terms. There’s a little more complexity to it if truth be told, but unless you're
navigating the high seas or piloting a commercial airliner, you're probably not
going to need to go into that much detail.

The same works for longitude. Everything is expressed as a positive number,
so west of the Prime Meridian is suffixed with a W, and everything to the east is
suffixed with an E. Combining these with the north and south longitude
designations divide the planet into four quadrants of 180 degrees each.

How is this of any relevance to the GIS developer?

If you're looking to retrieve the data from any commercial-grade GPS,
particularly those built into mobile phones, you'll almost always come face to face
with the National Marine Electronics Association and its standards for electronic
navigation devices to communicate, known as the NMEA 0183 standard. Opening
the GPS port on just about any device will produce a constant stream of data that
looks very similar to the following:

$GPGGA,092750.000,5321.5802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*7¢
$GPGSA A,3,10,07,05,02,29,04,08,13,,,,,1.72,1.03,1.38*0A
$GPGSV,3,1,11,10,63,137,17,07,61,098,15,05,59,290,20,08,54,157,30*70
$GPGSV,3,2,11,02,39,223,19,13,28,070,17,26,23,252,,04,14,186,14*79

This data stream is the navigation data emitted by the GPS circuitry in the
device in response to what it's able to receive from the GPS network orbiting the
Earth. We’ll come back to this in more detail in a later chapter. For now, I'd like to
draw your attention to the first line of this data, specifically the following entries:

5321.5802,N and 00630.3372,W

These are the GPS’ current location expressed as degrees and minutes.
Deciphering them is not hard once you get used to it, but it can be a little strange
at first.

The format of the string is DDMM.mmmm for the latitude (vertical) direction
and DDDMM.mmmm for the longitude (horizontal) direction.

Starting with the north (latitude) measurement in the string, the first two digits
are the number of degrees, and the remaining numbers are the minutes. The
numbers after the decimal point are fractions of a minute. This gives us:

53 degrees, 21.5802 minutes north

For the longitude measurement, the first three digits are the number of
degrees, and the remaining digits are the minutes. All the numbers after the
decimal are fractions of a minute. This gives us:

6 Degrees, 30.3372 minutes west

Because this data is string data, it's essentially an exercise in cutting the string
at specific points to derive the values you want. Once you have them, the math to
convert them to the more familiar latitude and longitude (if you remember that was
WGS84) format is very simple.

First, you need to separate the first two digits from the latitude string and the
first three from the longitude. This gives the following:

53 and 21.5802 for the north direction
006 and 30.3372 for west

Because there are 60 minutes in a degree, we must divide the minutes digits
by sixty to find what fraction of a degree they are, and then combine them with our
whole degrees. So, for our latitude:

53 + (21.5812/60) will give you 53.359686 degrees.
And for our longitude:
6 + (30.3372/60) will give you 6.505620 degrees.

You get simple positions from the numbers. To finish the conversion, you need
to apply the north and west directions as positive or negative numbers. The
easiest way to manage which directions are positive or negative is to change any
west or south measurements to negative. So with our numbers, the final
coordinates in WGS84 latitude and longitude are:

53.359686, -6.505620

WGS84 is a global coordinate system standard, and while it is widely used,
using it for everything can cause some problems. Because WGS84 is designed to
cover the globe, it's designed also to be very lenient with the curvature of the
planet. Think back to the wireframe globe in Figure 4. Notice the shape of the
rectangles as they near the top of the globe.

You can see in the diagram that the rectangles become longer and narrower.
This stretching also has to be accounted for in the coordinate system. Over long
distances, it can cause rounding and deviations to occur in your data.

If you're dealing with a territory where you only have a defined area of
operation, using a coordinate system more suited to that area is the preferred way
of working. As | mentioned previously, for me here in the U.K. it's often better for
me to convert these WGS84 coordinates to OSGB36 before storing them in my
database. As we’ll see later when we start looking at spatial SQL, your GIS
database can do this on the fly when set up correctly.

That's pretty much all you need to know as a developer. There’s much deeper
stuff you can dig into such as spheroid and airy calculations, geodetic
measurements, and a lot of that trigonometry stuff from school. The fact is that
your GIS database and many of the tools you'll use will actually do the vast
majority of the heavy lifting for you. So while having a good knowledge of the
actual formulas used by the systems and the Proj.4 strings may be interesting, |
assure you of one thing: it will end up giving you a brain ache.

In the next chapter, we start to move onto more interesting things, starting with
the software we’ll be using.

