
Methods in Molecular Biology 1050

Springer Protocols

Peptide Nucleic Acids

Methods and Protocols

Second Edition

$Methods \ in \ Molecular \ Biology^{\mathsf{TM}}$

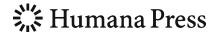
Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes: http://www.springer.com/series/7651

Peptide Nucleic Acids

Methods and Protocols

Second Edition


Edited by

Peter E. Nielsen

Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark

Daniel H. Appella

Section on Synthetic Bioactive Molecules, Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, Bethesda, MD, USA

Editors
Peter E. Nielsen
Department of Cellular and Molecular Medicine
University of Copenhagen Faculty
of Health Sciences
Copenhagen, Denmark

Daniel H. Appella Section on Synthetic Bioactive Molecules Laboratory of Bioorganic Chemistry NIDDK, NIH, DHHS Bethesda, MD, USA

ISSN 1064-3745 ISSN 1940-6029 (electronic) ISBN 978-1-62703-552-1 ISBN 978-1-62703-553-8 (eBook) DOI 10.1007/978-1-62703-553-8 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013954403

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Humana Press is a brand of Springer Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Peptide nucleic acids "celebrated" the 20th anniversary in 2011. Since their discovery the chemistry has been both intensively and extensively explored, and many interesting new derivatives and analogs in terms of nucleic acid recognition specificity and affinity have emerged. Also great ingenuity in exploiting the unique properties of PNAs for a wide variety of applications within drug discovery, medical diagnostics, chemical biology, and nanotechnology has unfolded. In the present volume we have attempted to exemplify and illustrate recent exciting advances in PNA chemistry and applications as a complement to the first edition of this book. Therefore, we hope that it shall serve both as a source of useful specific methods and protocols as well as a source of inspiration for future developments.

Copenhagen, Denmark Bethesda, MD, USA Peter E. Nielsen Daniel H. Appella

Contents

-	tace	ix
1	MiniPEG-γPNA	1
2	Cyclopentane Peptide Nucleic Acids	13
3	Chiral PNAs with Constrained Open-Chain Backbones	19
4	Synthesis, Characterization, and Evaluation of Radiometal-Containing Peptide Nucleic Acids	37
5	Preparation of Metal-Containing Peptide Nucleic Acid Bioconjugates on the Solid Phase	55
6	Formation and Characterization of PNA-Containing Heteroquadruplexes Bruce A. Armitage	73
7	Sequence Selective Recognition of Double-Stranded RNA Using Triple Helix-Forming Peptide Nucleic Acids	83
8	Assembly of PNA-Tagged Small Molecules, Peptides, and Carbohydrates onto DNA Templates: Programming the Combinatorial Pairing and Inter-ligand Distance	95
9	Site-Selective Scission of Human Genome Using PNA-Based Artificial Restriction DNA Cutter Kenichiro Ito and Makoto Komiyama	111
10	PNA Openers and Their Applications for Bacterial DNA Diagnostics	121
11	DNA-Templated Native Chemical Ligation of Functionalized Peptide Nucleic Acids: A Versatile Tool for Single Base-Specific Detection of Nucleic Acids	131
12	Use of Peptide Nucleic Acids (PNAs) for Genotyping by Solution and Surface Methods	143

viii Contents

13	Analysis of PNA Hybridization by Surface	
	Plasmon Resonance	159
	Bruce A. Armitage	
14	PNA Fluorescent In Situ Hybridization (FISH) for Rapid Microbiology and Cytogenetic Analysis Henrik Stender, Brett Williams, and James Coull	167
15	Rapid miRNA Imaging in Cells Using Fluorogenic Templated Staudinger Reaction Between PNA-Based Probes	179
16	Cellular Delivery of Peptide Nucleic Acids (PNAs)	193
17	Peptide Nucleic Acid-Mediated Recombination for Targeted Genomic Repair and Modification	207
18	Antisense Effects of PNAs in Bacteria	223
Ina	lex	237

Contributors

- DANIEL H. APPELLA Section on Synthetic Bioactive Molecules, Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, Bethesda, MD, USA
- Bruce A. Armitage Department of Chemistry, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, PA, USA
- RAMAN BAHAL Department of Chemistry Carnegie Mellon University, Pittsburgh, USA SOFIA BARLUENGA Laboratoire de Chemie Organique et Bioorganique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France
- MARIANGELA BENCIVENNI Department of Food Science, University of Parma, Parma, Italy Mihai Ciobanu Laboratoire de Chemie Organique et Bioorganique,

 Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur
 - Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France
- ROBERTO CORRADINI Department of Chemistry, University of Parma, Parma, Italy James Coull AdvanDx, Woburn, MA, USA
- Jean Pierre Daguer Laboratoire de Chemie Organique et Bioorganique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France Christian Dose • Department of Organic and Bioorganic Chemistry,
 - Humboldt-Universität zu Berlin, Berlin, Germany
- Ethan A. Englund Section on Synthetic Bioactive Molecules, Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, Bethesda, MD, USA
- Simon Ficht Department of Organic and Bioorganic Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- Christian Foerster Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Maxim D. Frank-Kamenetskii Department of Biomedical Engineering, Boston University, Boston, USA
- GILLES GASSER Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
- Peter M. Glazer Department of Genetics, Yale University School of Medicine, New Haven, USA
- Shan Goh Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, UK
- LIAM GOOD Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, UK
- Katarzyna Gorska Laboratoire de Chemie Organique et Bioorganique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France
- Pankaj Gupta Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
- Kenichiro Ito Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

MAKOTO KOMIYAMA • Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Danith H. Ly • Department of Chemistry Carnegie Mellon University, Pittsburgh, USA Arunava Manna • Department of Chemistry Carnegie Mellon University, Pittsburgh, USA Rosangela Marchelli • Department of Chemistry, University of Parma, Parma, Italy Peter E. Nielsen • Department of Cellular and Molecular Medicine,

University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark

Srinivas Rapireddy • Department of Chemistry Carnegie Mellon University, Pittsburgh, USA Alexander Roloff • Department of Organic and Bioorganic Chemistry,

Humboldt-Universität zu Berlin, Berlin, Germany

Eriks Rozners • Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA

ERICA B. Schleifman • Department of Genetics, Yale University School of Medicine, New Haven, USA

OLIVER SEITZ • Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany

Stefano Sforza • Department of Food Science, University of Parma, Parma, Italy Takehiko Shiraishi • Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark

IRINA V. SMOLINA • Department of Biomedical Engineering, Boston University, Boston, USA

Jem Stach • Department of Biology, Newcastly University, Newcastle, UK

Henrik Stender • Stender Diagnostics, Copenhagen, Denmark

Holger Stephan • Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Tullia Tedeschi • Department of Food Science, University of Parma, Parma, Italy Alessandro Tonelli • Department of Food Science, University of Parma, Parma, Italy Brett Williams • Life Technologies, Eugene, NY, USA

NICOLAS WINSSINGER • Laboratoire de Chemie Organique et Bioorganique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France

Thomas Zengeya • Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA

Ning Zhang • Section on Synthetic Bioactive Molecules, Laboratory of Bioorganic Chemistry, NIDDK, NIH, DHHS, Bethesda, MD, USA

Chapter 1

MiniPEG-γPNA

Arunava Manna, Srinivas Rapireddy, Raman Bahal, and Danith H. Ly

Abstract

Peptide nucleic acids (PNAs) are attractive, as compared to other classes of oligonucleotides that have been developed to date, in that they are relatively easy to synthesize and modify, hybridize to DNA and RNA with high affinity and sequence selectivity, and are resistant to enzymatic degradation by proteases and nucleases; however, the downside is that they are only moderately soluble in aqueous solution. Herein we describe the protocols for synthesizing the second-generation $\gamma PNAs$, both the monomers and oligomers, containing MiniPEG side chain with considerable improvements in water solubility, biocompatibility, and hybridization properties.

Key words Chiral PNA, Backbone modification, Conformational preorganization, Water solubility

1 Introduction

Peptide nucleic acids (PNAs) are attractive, as compared to other classes of oligonucleotides that have been developed to date, in that they are relatively easy to synthesize and modify, hybridize to DNA and RNA with high affinity and sequence selectivity, and are resistant to enzymatic degradation by proteases and nucleases; however, the downside is that they are only moderately soluble in aqueous solution. Herein we describe the protocols for synthesizing the second-generation $\gamma PNAs$, both the monomers and oligomers, containing MiniPEG side chain with considerable improvements in water solubility, biocompatibility, and hybridization properties.

PNAs hold considerable promise as molecular tools for basic research in biology, biotechnology, and molecular engineering, as well as therapeutic and diagnostic reagents for the treatment and detection of genetic diseases [1–7], because of their strong binding affinity and sequence selectivity, resistance to proteases and nucleases [5], and ease [8, 9] and flexibility of synthesis [10].

However, the drawback, as compared to other classes of oligonucleotides developed to date, is water solubility [11, 12]. Because of their charge-neutral backbone, the very essence that endows PNAs with many of their appealing attributes, they are only moderately soluble in aqueous solution. While this is not an issue for most in vitro and cell culture work, this inherent property posts a considerable challenge for their handling and processing at elevated concentrations—for instance, in the development of microarrays and surface-bound applications, because of their propensity to aggregate and collapse onto the surface, causing poor and nonspecific binding [13, 14], and in biology and medicine, in part because of the concern for off-target binding and cytotoxicity [12].

Several approaches have so far been undertaken to try to address this issue, including covalent attachment of charged amino acid residues [15–17]; installation of polar groups in the backbone [18], carboxymethylene bridge [19], and nucleobases [20]; replacement of the original pseudopeptide backbone with a negatively charged scaffold [21, 22]; conjugation of large-molecularweight polyethylene glycol (PEG) to one or both of the termini [14, 23]; fusion of PNA to DNA to generate a chimeric oligomer [24-28]; and complete redesign of the backbone skeleton [29]. While some success has been achieved with these various strategies, it is often at the expense of binding affinity and/or sequence selectivity and, in some cases, requires an elaborate synthetic scheme. Herein we report the protocols for synthesizing diethylene glycol (or MiniPEG)-containing γPNA monomers and oligomers [30], with considerable improvements in water solubility, biocompatibility, and hybridization properties over the original design. Unlike the achiral counterparts, chiral yPNA oligomers [31-35] adopt a preferred conformation, either a right-handed or a left-handed helix, depending on the stereochemistry at the y-backbone position. Those derived from L-amino acids adopt a right-handed helix and hybridize to DNA and RNA with high affinity and sequence selectivity, while those derived from unnatural D-amino acids do not; however, they do hybridize to their partners with affinity and sequence selectivity and level of orthogonality. These latter properties make them attractive as molecular recognition codes for organizing and programming molecular self-assembly. The solid-phase synthesis protocols described herein differ considerably from those originally reported by Christensen and co-workers [36], in that they have been optimized for high-throughput synthesis, whereby several critical steps, including neutralization and capping, have been omitted in order to expedite the process and reduce the cost of material consumption and also to enable the synthesis of thioester-containing yPNA oligomeres.

2 Material

Further purification of commercial reagents is not necessary. Prepare dry solvents by standard methods. Perform chromatography using standard-grade silica gel and TLC with precoated silica gel plates. Carefully follow all waste disposal regulations when disposing waste solvents and materials.

2.1 Chemicals

- 1. DCC: *N*, *N'* -Dicyclohexylcarbodiimide.
- 2. DCM: Dichloromethane.
- 3. DCU: N, N'-Dicyclohexylurea.
- 4. DhBtOH: 3-Hydroxy-4-oxo-3, 4-dihydro-1, 2, 3-benzotriazin.
- 5. DIAD: Diisopropyl azodicarboxylate.
- 6. DIPEA: Di-isopropylethylamine.
- 7. DME: Dimethyl ether.
- 8. DMF: N, N-Dimethylformamide.
- 9. HATU: 2-(1*H*-7-Azabenzotriazol-1-yl)-1, 1, 3, 3-tetramethyl uranium hexafluorophosphate methanaminium.
- 10. HBTU: *O*-Benzotriazole-*N*, *N*, *N'*, *N'*-tetramethyl-uronium-hexafluoro-phosphate.
- 11. nMDCHA: *n*-methyl dicyclohexylamine.
- 12. NMM: N-Methylmorpholine.
- 13. NMP: *N*-Methyl-2-pyrrolidone.
- 14. TFA: Trifluoroacetic acid.
- 15. TFMSA: Trifluoromethanesulfonic acid.
- 16. THF: Tetrahydrofuran.

2.2 Kaiser Solutions

- 1. Kaiser A: Mix 980 μ L pyridine with 100 μ L phenol/EtOH (4:1) and 20 μ L KCN stock solution. (KCN stock solution: Dissolve 0.65 mg KCN in 10 mL water, then take 2 mL of that solution, and mix it with 98 mL water.)
- 2. Kaiser B: Dissolve 5 g ninhydrin in 100 mL EtOH.
- 3. Kaiser test: Add one drop of Kaiser A and one drop of Kaiser B to an Eppendorf tube containing a small amount of resin, and heat the mixture at 90 °C for 2 min in a heating block. Blue color indicates the presence of free amines.

2.3 Coupling Solutions (Figs. 1 and 2)

- 1. Solution A: 0.2 M Boc-Lys-2-Cl-Z-OH in NMP. Dissolve 7.6 mg Boc-Lys-2-Cl-Z-OH in 100 μL NMP.
- 2. Solution B: 0.500 M DIEA in pyridine. Dissolve 87 μL DIEA in 913 μL pyridine.

Fig. 1 Reagents and conditions: (a) NaH, BrCH₂CH₂OCH₂CCH₂OCH₃, DMF, 0 °C, 68 %; (b) isobutyl chloroformate, NaBH₄, NMM, DME, 0 °C \rightarrow rt, 84 %; (c) DIAD, 2,4-dinitrobenzenesulfonyl glycine ethyl ester, TPP, THF, 0 °C \rightarrow rt, 56 %; (d) n-propylamine, CH₂Cl₂, rt, 81 %; (e) carboxymethylene nucleobase, DCC, DhObtOH, DMF, 50 °C, 67–85 %; (f) 2 M NaOH/THF (1:1), 0 °C, 85–98 %

Fig. 2 Monomer coupling

DATE:		PNA SYNTHESIS FORM F									P	PNA#:						
			100mg	Resin (Suitable	for Pr	eparing	g Thioe.	ster as	Well)								
Sequence (C→N)																I	Т	T
TFA/m																		
TFA/m-cresol (5min)																1	 	
DCM (3X)																	1	
DMF (3X)																+	+	
Kaiser Test (B)																	1	1
Coupling (15min)																		
DMF (4X)																		
DCM																		
Kaiser Test (Y)																+	+	
Coupling solution : 300µl	L 0.2M mo	nomer (N	MP) + 150	μL 0.52	M DIEA	(DMF)	+ 150 μ	L 0.39N	1 HBTU	(DMF),	activate	e for 3 m	nin.				1	1
0.39M HBTU (DMF): Disso 0.52M DIEA (DMF): Add																		
0.2M Monomers: Dissolv																		
Boc-Lys(2-Cl-Z)-OH: 25mg			: 28mg; Bo											A: 28m	 g			
Boc-PNA-Monomers : A ^{Cb} MiniPEG- γ PNA-Monome						g			-									

Fig. 3 PNA synthesis form

- 3. Solution C: 0.202 M HATU in NMP. Dissolve 15.36 mg HATU in 200 μL NMP.
- 4. Solution D: Mix 45 μL Solution A with 46 μL Solution B and 159 μL NMP.
- 5. Solution E: Mix 55 μL Solution C with 195 μL NMP.
- 6. Capping solution: Mix 2 mL NMP with 2 mL pyridine and 1 mL acetic anhydride.
- 7. Deprotection solution: Mix 95 mL TFA with 5 mL m-cresol.

2.4 Monomer Coupling Solutions (See Note 2)

- 1. 0.2 M Monomer in DMF (**Solution A**): *See* Fig. 3 chart for the exact amount of each monomer.
- 2. 0.52 M DIEA in DMF (**Solution B**): Mix 362 μ L DIEA with 3.638 mL anhydrous DMF.
- 3. 0.39 M HBTU in DMF (**Solution C**): Dissolve 740 mg HBTU in 5 mL anhydrous DMF.

2.5 Cleavage from Resin

- 1. Cleavage cocktail: 100 μL m-cresol, 100 μL thioanisole, 200 μL TFMSA, and 600 μL TFA.
- 2. Deprotection solution: m-cresol/TFA: 5/95.

3 Methods

3.1 Monomer Synthesis

3.1.1 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-Serine [2] Carry out all moisture-sensitive reactions under nitrogen atmosphere.

- 1. Dissolve Boc-L-Ser-OH (4.05 g, 19.6 mmol) in anhydrous DMF (30 mL).
- 2. Use addition funnel, and add the above solution dropwise over the course of 3 h to a suspension of NaH (60%, 1.7 g, 42.6 mmol) in anhydrous DMF (80 mL) at $0 \, ^{\circ}\text{C}$ while stirring.
- 3. Upon completing **step 2**, add 1-bromo-2-(2-methoxyethoxy) ethane (6.4 mL, 42.6 mmol) to the reaction mixture at once at 0 °C. Remove the ice bath, and gradually allow the reaction mixture to warm to room temperature and continue stirring for another 3 h.
- 4. After confirming that the reaction is complete by TLC, quench the reaction by adding cold water (100 mL) to the mixture. Then evaporate the solvents under reduced pressure (maintaining the water bath temperature below 50 °C at all times, see Note 3).
- 5. Add 20 mL of water to the residue in the flask and then acidify with 5 % aqueous HCl to pH \sim 3.
- 6. Extract the aqueous layer with ethyl acetate $(5 \times 100 \text{ mL})$, dry the combined organic layers over anhydrous Na_2SO_4 , and then remove the solvent under reduced pressure.
- 7. Purify the crude residue by column chromatography using EtOH/EtOAc (5/95) solvent mixture as an eluent (R_j: 0.2, TLC). The product is a colorless liquid. The yield should be ~68 % (4.1 g).
- 1. Add NMM (1.43 mL, 13.0 mmol) to a stirred solution of compound 2 (4 g, 13.0 mmol) in 20 mL of DME at 0 °C, and allow the mixture to stir for another 10 min.
- 2. Add isobutyl chloroformate (1.76 mL, 13.0 mmol) dropwise to the solution in **step 1**.
- 3. After stirring for 30 min, white precipitate should form. At this point, filter off the precipitate and wash with DME $(2 \times 10 \text{ mL})$. Note that the product is in the flow-through.
- 4. Place the filtrate in 250-mL round-bottom flask and chill in an ice bath while stirring.
- 5. To the solution in **step 4**, slowly add NaBH₄ (0.741 g, 19.5 mmol; dissolved in 10 mL water) (*see* **Note 2**), and continue to stir the mixture for 30 min.
- 6. Extract the reaction mixture with ethyl acetate $(3\times100 \text{ mL})$, wash the combined organic layers with brine, dry over anhydrous

3.1.2 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-Serine-ol [3] Na_2SO_4 , evaporate the solvent under reduced pressure, and then purify the crude mixture by silica gel column chromatography using EtOAc as an eluent (R_f : 0.25, TLC). The product is a colorless liquid. The yield should be ~84 % (3.2 g).

3.1.3 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-SERINE-\(\psi[CH_2N(o,p-diNBS)]\) Gly-OEt [4]

- 1. Sequentially add 2,4-dinitrobenzenesulfonyl glycine ethyl ester (3.53 g, 10.5 mmol, *see* **Note 4**) and triphenyl phosphine (2.73 g, 10.5 mmol) to a stirred solution of compound **3** (3.1 g, 10.5 mmol) in anhydrous THF (20 mL) at 0 °C.
- 2. Add DIAD (1.48 mL, 10.5 mmol) dropwise over the course of 30 min to the resulting mixture.
- 3. Allow the reaction mixture to warm to room temperature and then stir overnight.
- 4. Evaporate the solvent under reduced pressure, and purify the oily residue by column chromatography using EtOAc/hexane (60/40) mixture as an eluent (R_j: 0.40, TLC). The product is a yellow solid. The yield should be ~56 % (3.6 g).

3.1.4 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-SERINE-Y[CH₂N]Gly-OEt [5]

- 1. Add *n*-propyl amine (7.0 mL, 85.4 mmol) dropwise to a stirred solution of compound **4** (2.6 g, 4.2 mmol) in DCM (20 mL) at room temperature and continue to stir for another 20 min.
- 2. Evaporate the solvent under reduced pressure, and purify the crude mixture by column chromatography using EtOAc as an eluent (R_j : 0.2, TLC). The product is a pale yellow liquid. The yield should be ~81 % (1.3 g).

3.1.5 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-Serine Thymine Ethyl Ester (6a)

- 1. Dissolve thymine acetic acid (0.287 g, 1.56 mmol) in anhydrous DMF (15 mL), followed by sequential addition of DCC (0.324 g, 1.56 mmol) and DhbtOH (0.254 g, 1.56 mmol) while stirring at room temperature.
- 2. After 1 h, add the solution of compound 5 (0.5 g, 1.32 mmol) in DMF (10 mL) dropwise to the reaction mixture and continue to stir at 50 °C for 24 h.
- 3. Filter off the pale yellow solid (DCU by-product), and evaporate the filtrate under reduced pressure. Partition the residue with ethyl acetate (100 mL) and saturated aqueous NaHCO $_3$ solution (100 mL). Wash the organic layer with 10 % KHSO $_4$ (50 mL), 10 % NaHCO $_3$ (50 mL), and brine (50 mL) and then dry over anhydrous Na₂SO $_4$.
- 4. Evaporate the solvent under reduced pressure, and purify the crude product by silica gel chromatography using EtOH/EtOAc mixture (5/95) as an eluent (R_f: 0.6, TLC). The product is a white foamy solid. The yield should be ~67 % (0.5 g).

Follow the same procedure as described for thymine ester (6a) to prepare adenine ester (6b), guanine ester (6c), and cytosine ester (6d).

3.1.6 Boc-(2-(2-Methoxyethoxy) Ethyl)-L-Serine Thymine Monomer (7a)

- 1. Add 2 M NaOH (15 mL) dropwise over a period of 15 min to a stirred solution of compound **6a** (0.480 g, 0.88 mmol) in THF (15 mL) at 0 °C.
- 2. After 30 min, dilute the reaction mixture with water (100 mL) and extract with ethyl acetate (2×25 mL).
- 3. Acidify the aqueous layer with 1 M HCl to pH \sim 4 at 0 °C and then extract with ethyl acetate (3×100 mL). Combine the organic layers and dry over anhydrous Na₂SO₄.
- 4. Evaporate the solvent under reduced pressure and purify by column chromatography using MeOH/DCM (20/80) mixture as an eluent (R_j: 0.4, TLC). The product is an off-white solid. The yield should be ~87 % (0.4 g).

Follow the same procedure as described for thymine monomer $(7\mathbf{a})$ to prepare adenine $(7\mathbf{b})$, guanine $(7\mathbf{c})$, and cytosine $(7\mathbf{d})$ monomers.

3.2 A General Procedure for Preparing MTPA Derivatives

- 1. Add 5 mL of TFA/m-cresol mixture (95:5) to a cold solution of compound 2 (0.10 g, 0.36 mmol) in DCM (5 mL) while stirring.
- 2. After 30 min, remove the ice bath and allow the reaction mixture to stir at room temperature until all the starting material is consumed (~2 h), as determined by TLC.
- 3. Evaporate the solvent under reduced pressure, triturate the crude mixture with diethyl ether (3×5 mL), dry the resulting residue under high vacuum, and proceed to next coupling step without further purification.
- 4. Dissolve the above crude residue in DCM (5 mL) and place in an ice bath while stirring. To this reaction mixture, add DIPEA (0.125 mL, 0.72 mmol) followed by (S)-(+)-α-methoxy-α-trifluoromethylphenylacetyl chloride (MTPA-Cl, 0.074 mL, 0.396 mmol), and continue to stir the reaction mixture at room temperature overnight.
- 5. Dilute the reaction mixture with DCM (20 mL) and wash with water (2×10 mL) and then brine. Dry the DCM layer over anhydrous Na₂SO₄, remove the solvent under reduced pressure, and purify the crude mixture by column chromatography using EtOAc as an eluent (R_f : 0.3). The product is a colorless viscous liquid. The yield should be ~70 % over two steps (0.104 g).

Follow the same procedure for preparing compounds 9 and 10.

3.3 Solid-Phase Synthesis of γPNA Oligomers Solid-phase synthesis of γPNA oligomers consists of four major steps: (1) resin loading, (2) deprotection, (3) coupling, and (4) cleavage. It is recommended that Kaiser be performed at every few coupling steps to ensure that the reaction proceeds smoothly, with near-quantitative yield in each step.

3.3.1 Resin Swelling (100 mg)

- 1. Place 100 mg MBHA resin in the reaction vessel (or reactor).
- 2. Add 2 mL DCM to disperse the resin and let it stand for 1 h.
- 3. Drain out the solvent and wash with DCM $(2\times)$.
- 4. Wash the resin with 5 % DIEA in DCM followed by DCM $(2\times)$.
- 5. Drain the solvent.

3.3.2 Lysine Coupling

- 1. Mix **Solutions D** and E together and vortex for 1 min to activate the lysine monomer, and then add the mixture to the resin.
- 2. Agitate the reactor to allow resin mixing for 1 h.
- 3. Wash the resin with DMF $(2\times)$ followed by DCM $(4\times)$.
- 4. Neutralize the remaining free amines with 5 % DIEA/DCM, followed by DCM wash (4×).

3.3.3 Capping

- 1. Add ~1.5 mL **Capping Solution** to the resin, and agitate the reaction vessel for 30 min.
- 2. Drain the Capping Solution, and repeat step 2 once more.
- 3. Drain the **Capping Solution**, and wash the resin with DCM $(2\times)$.
- 4. Perform the Kaiser test.
- 5. The resin should be colorless (or pale yellow), indicating that all the amino groups have been capped. If not, the resin should be blue. In that case, repeat **steps 1–5** again.

3.3.4 Deprotection

- 1. Add 1 mL **Deprotection Solution** to the resin, agitate the reaction vessel to induce mixing for 5 min, and then drain the **Deprotection Solution**.
- 2. Repeat **step 1** again for a total of two rounds of deprotection.
- 3. Drain the **Deprotection Solution**, and wash the resin with DCM $(3\times)$ and then DMF $(3\times)$.
- 4. Perform the Kaiser test. If the test is positive (the resin is blue), repeat steps 1–3 (*see* Note 6).

3.3.5 PNA Coupling

- 1. Activate the monomer by mixing 300 μL **Solution A** with 150 μL **Solution B** and 150 μL **Solution C**, vortex for 10 s, and then let it stand for 3 min.
- 2. Add the coupling solution to the resin, and agitate the reaction vessel for 15 min to permit mixing.
- 3. Drain the coupling solution, and wash the resin thoroughly with DMF $(4\times)$ and then DCM $(1\times)$.
- 4. Perform the Kaiser test. If the test is positive (the resin is blue), repeat steps 1–3. We never had this problem. It is not necessary to perform the Kaiser test at every coupling step. Do it once every four or five coupling steps once the reaction conditions have been optimized.

3.3.6 Cleavage

- 1. Remove Boc by adding 1 mL **Deprotection Solution** (m-cresol/TFA: 5/95) to the resin, and agitate the reaction vessel for 4 min. Do this twice.
- 2. Drain the **Deprotection Solution**.
- 3. Add the **Cleavage Solution** to the resin, and agitate the reaction vessel to permit mixing for 1 h.
- 4. Collect the **Cleavage Solution** from the reaction vessel in a 15-mL tube.
- 5. Add 10 mL ethyl ether to the **Cleavage Solution**, close the cap, and shake the tube briefly. White precipitate should form (γPNA oligomers).
- 6. Centrifuge the tube at 4,000 cpm for 5 min, and then decant the solvent.
- 7. Add 10 mL ethyl ether to the tube, vortex thoroughly, and repeat **step 6** once more (washing).
- 8. Decant the solvent, and air-dry the pellet.
- 9. Purify the oligomer by RP-HPLC using gradient water/acetonitrile mixtures containing 0.1 % TFA. Verify the identity of the oligomer by MALDI-TOF MS (*see* Note 7).

4 Notes

- 1. Clean and dry all glassware in an oven prior to use.
- 2. NaBH₄ reduction reaction should be carried out in a relatively large flask, because addition of NaBH₄ to the filtrate causes strong effervescence.
- 3. Heating at higher temperatures (above 50 °C) can lead to racemization.
- 4. Prepare 2,4-dinitrobenzenesulfonyl glycine ethyl ester according to the procedure in ref. 35.
- 5. Make sure that the result of the Kaiser test is based on the color of the resin and not the color of the solution.
- 6. A slight excess of the monomer is used in the coupling reaction to maximize the coupling efficiency and minimize formation of tetramethyl guanidine-capped side product. This side product appears as M+100 in the MALDI-TOF spectrum.
- 7. Thioanisole and m-cresol are used as scavengers in the cleavage cocktail.

References

- Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thyminesubstituted polyamide. Science 254:1497–1500
- Egholm M, Buchardt O et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568
- 3. Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32: 624–630
- Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of doublestranded DNA by "tail-clamp" peptide nucleic acid. Biochemistry 42:13987–13995
- Demidov VV et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313
- Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14: 1041–1060
- 7. Nielsen PE (2004) PNA technology. Mol Biotechnol 26:233–248
- 8. Dueholm KL et al (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their oligomerization. J Org Chem 59:5767–5773
- 9. Thomson SA et al (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51:6179–6194
- Beck F, Nielsen PE (2003) Artificial DNA: methods and applications. CRC Press, Boca Raton, FL, pp 91–114
- Braasch DA, Corey DR (2001) Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. Methods 23:97–107
- Tackett AJ, Corey DR, Raney KD (2002) Non-Watson-Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase. Nucleic Acids Res 30:950–957
- Masuko M et al (2003) Hybridization of an immobilized PNA probe with its complementary oligodeoxyribonucleotide on the surface of silica glass. Nucleic Acids Res (Suppl):145–146
- Cattani-Scholz A et al (2009) PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules 10:489–496
- Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA).
 Oligonucleotide analogues with an acbiral

- peptide backbone. J Am Chem Soc 114: 1895–1897
- 16. Haaima G, Lohse A, Buchardt O, Nielsen PE (1996) Peptide nucleic acids (PNAs) containing thymine monomers derived from chiral amino acids: hybridization and solubility properties of D-lysine PNA. Angew Chem Int Ed Engl 35:1939–1941
- 17. Sforza S, Tedeschi T, Corradini R, Marchelli R (2007) Induction of helical handedness and dna binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur J Org Chem 2007:5879–5885
- 18. Boyarskaya NP et al (2006) Synthesis of two new thymine-containing negatively charged PNA monomers. Dokl Chem (Transl Dokl Akad Nauk) 408:57–60
- 19. Gildea BD et al (1998) PNA solubility enhancers. Tetrahedron Lett 39:7255–7258
- Hudson RHE, Liu Y, Wojciechowski F (2007) Hydrophilic modifications in peptide nucleic acid synthesis and properties of PNA possessing 5-hydroxymethyluracil and 5hydroxymethylcytosine. Can J Chem 85: 302–312
- 21. Peyman A et al (1996) Phosphonic ester nucleic acids (PHONAs): oligodeoxyribonucleotide analog with an achiral phosphonic acid ester backbone. Angew Chem Int Ed Engl 35: 2636–2638
- 22. Efimov VA et al (1998) Synthesis and evaluation of some properties of chimeric oligomers containing PNA and phosphono-PNA residues. Nucleic Acids Res 26:566–575
- 23. Bonora GM et al (2007) PNA conjugated to high-molecular weight poly(ethylene glycol): synthesis and properties nucleosides, nucleotides. Nucleic Acids 26:661–664
- 24. Petersen KH, Jensen DK, Egholm M, Nielsen PE, Buchardt O (1995) A PNA-DNA linker synthesis of N-[(4,4'-dimethoxytrityloxy) ethyl]-N-(thymin-1-ylacetyl)glycine. Bioorg Med Chem Lett 5:1119–1124
- Bergmann F, Bannwarth W, Tam S (1995) Solid phase synthesis of directly linked PNA-DNAhybrids. Tetrahedron Lett 36:6823–6826
- Uhlmann E, Will DW, Breipohl G, Langner D, Ryte A (1996) Synthesis and properties of PNA/DNA chimeras. Angew Chem Int Ed Engl 35:2632–2635
- Finn PJ, Gibson NJ, Fallon R, Hamilton A, Brown T (1996) Synthesis and properties of DNA-PNA chimeric oligomers. Nucleic Acids Res 24:3357–3363

- 28. Vander Laan AC et al (1997) A convenient automated solid-phase synthesis of PNA-(5')-DNA-(3')-PNA chimera. Tetrahedron Lett 38: 2249–2252
- 29. Kuwahara M, Arimitsu M, Sisido M (1999) Novel peptide nucleic acid that shows high sequence specificity and All-or-none-type hybridization with the complementary DNA. J Am Chem Soc 121:256–257
- 30. Sahu B et al (2011) Synthesis and characterization of conformationally preorganized,(R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76: 5614–5627
- 31. Dragulescu-Andrasi A et al (2006) A simple γ -backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267

- 32. Zhou P, Dragulescu-Andrasi A et al (2006) Synthesis of cell-permeable peptide nucleic acid monomers and oligomers, and characterization of their hybridization and uptake properties. Bioorg Med Chem Lett 16:4931–4935
- Rapireddy S, He G, Roy S, Armitage BA, Ly DH (2007) Strand invasion of mixed-sequence B-DNA by acridine-linked, γ-peptide nucleic acid (γ-PNA). J Am Chem Soc 129:15596–15600
- 34. Chenna V et al (2008) A simple cytosine to G-clamp nucleobase substitution enables chiral-PNAs to invade mixed-sequence double-helical B-form DNA. ChemBioChem 9:2388–2391
- 35. Sahu B et al (2009) Synthesis of conformationally preorganized and cell-permeable guanidine-based γ -peptide nucleic acids (γ GPNAs). J Org Chem 74:1509–1516
- 36. Christensen et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 1:175–183

Chapter 2

Cyclopentane Peptide Nucleic Acids

Ethan A. Englund, Ning Zhang, and Daniel H. Appella

Abstract

Incorporating a cyclopentane ring into the two-carbon unit of a peptide nucleic acid backbone increases its binding affinity to complementary nucleic acid sequences. This approach is a general method to improve binding and can be applied at either purine or pyrimidine bases.

Key words PNA, Cyclopentane, Nucleic acid

1 Introduction

Chemical modification to *aeg*PNA can be used to enhance certain physical properties and may be used to improve applications in biomedical research [1]. Chemically modified peptide nucleic acid (PNA) oligomers may have properties such as increased binding to natural nucleic acids, higher mismatch discrimination, selectivity to bind DNA versus RNA (or vice versa), selectivity between binding parallel and antiparallel nucleic acid sequences, increased solubility, and increased cellular uptake [2]. Using cyclic constraints within the achiral PNA architecture is one method to produce some of the aforementioned benefits [3]. Although the synthesis and characterization of modified *aeg*PNA monomers have usually required a laboratory dedicated to organic synthesis, increased access to commercially available intermediates has made the acquisition of cyclic PNA monomers particularly practical for use in molecular biology research.

(S,S) trans-cyclopentane PNA (tcypPNA) (Fig. 1) maintains the basic structure of aegPNA except that its conformation is restrained by a cyclopentane unit in place of the flexible ethylene group [4]. Adding chirality and rotational constraints to PNA (whether in the form of cyclic subunits or substitution along the ring) can predispose PNA oligomers into favorable binding conformations [2, 5]. Because of this, the (S,S) tcypPNA residues increase the binding affinity and mismatch selectivity of PNA probes

Boc-Protected (S,S) *trans* cyclopentane PNA Monomer

Fig. 1 Chemical structures for a single base unit of aegPNA and tcypPNA

to both single-stranded DNA and RNA (Table 1). This added stability also extends to PNA:DNA complexes beyond the canonical duplex form [6]. In many applications, it would be advantageous to reduce the length of PNA probes without reducing the binding temperature (Table 2). PNA sequences of similar length can vary considerably in binding affinity to complementary nucleic acids based on the ratio of pyrimidine nucleobases to purine nucleobases between different sequences [7]. Being able to selectively increase the binding temperatures of thymine-rich PNA probes could directly benefit diagnostic techniques by helping A:T-rich sequences attain similar stability to G:C-rich sequences (Table 3). Boc-protected (S,S) *tcyp*PNA monomer can be incorporated into aegPNA oligomers using existing methods covered elsewhere in this volume (either by manual or fully automated solid-phase synthesis), so any lab possessing the capability to take advantage of PNA technology should be able to easily incorporate this cyclic derivative into their methodologies.

Recently, one of the key intermediates for the synthesis of (S,S) *tcyp*PNA monomers (the mono-protected enantiomerically pure (1,2)-*trans*-cyclopentane diamine) has become available from a number of vendors. Although protected nucleobase acetic acids are available from vendors, thymine acetic acid is still the least expensive option for the synthesis of large quantities of Boc-protected (S,S)

Table 1
Melting temperature (Tm) of PNA oligomers to single stranded DNA, RNA

	Tm (°C)b		
PNA sequence ^a	DNA	RNA	
NH ₂ -(egl) ₂ -CCT TTG TAC TAT CCA-Lys-CONH ₂	59.0	69.4	
$\mathrm{NH_{2} ext{-}(egl)_{2} ext{-}CCT\ TTG\ T_{tcyp}AC\ T_{tcyp}AT\ CCA ext{-}Lys ext{-}CONH_{2}}$	66.7	74.9	
$NH_2\text{-}(egl)_2\text{-}CCT_{\text{r.yp}}\ TTG\ T_{\text{r.yp}}AC\ T_{\text{r.yp}}AT\ CCA\text{-}Lys\text{-}CONH_2$	70.0	76.9	
$NH_2\text{-}(egl)_2\text{-}CCT_{\kappa yp}\ T_{\kappa yp}\ T_{\kappa yp}G\ T_{\kappa yp}AC\ T_{\kappa yp}AC\ T_{\kappa yp}CCA\text{-}Lys\text{-}CONH_2$	76.9	Not available	

 $[^]a$ tcyp=PNA residue derived from (S,S)-*trans*-1,2-cyclopentane diamine, egl=8-amino-3,6-dioxaoctanoic acid b Tm represents the melting temperature for the duplex formed between the indicated PNA and antiparallel DNA. Conditions for Tm measurement: 3.0 μ M of PNA:DNA duplex, 150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0, 0.1 mM EDTA, UV measured at 260 nm from 90 to 20 °C, in 1 °C increments. All values are averages from two or more experiments

Table 2
Reduction of PNA oligomer length while maintaining binding temperatures

PNA sequence ^a	Tm (°C) ^b DNA
Biotin-(egl)5- GTC CTG TAG TTC ATT-Lys-CONH2	62.3
Biotin-(egl)5- TC CTG TAG TTC AT-Lys-CONH2	55.6
Biotin-(egl)5- TC CTG Τ _{κyp} AG TTC AT-Lys-CONH2	60.1
Biotin-(egl)5-CT _{κyp} G T _{κyp} AG T _{κyp} T _{κyp} C A-Lys-CONH2	69.3

 $[^]a$ tcyp=PNA residue derived from (S,S)-*trans*-1,2-cyclopentane diamine, egl=8-amino-3,6-dioxaoctanoic acid b Tm represents the melting temperature for the duplex formed between the indicated PNA and antiparallel DNA. Conditions for Tm measurement: 3.0 μ M of PNA:DNA duplex, 150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0, 0.1 mM EDTA, UV measured at 260 nm from 90 to 20 $^\circ$ C in 1 $^\circ$ C increments. All values are averages from two or more experiments

Table 3 Modification of *aeg*PNA oligomers to maintain uniform binding characteristics

PNA sequence ^a	Tm (°C) ^b DNA
NH ₂ -(egl) ₂ -CCT TTG TAC TAT CCA-Lys-CONH ₂	59.0
Biotin-(egl)5-GTC CTG TAG TTC ATT-Lys-CONH2	62.3
AcNH-TCA TTC GAG TAG CGG-Lys-CONH ₂	76.5
$NH_2\text{-}(egl)_2\text{-}CCT_{\kappa yp}\ T_{\kappa yp}T_{\kappa yp}G\ T_{\kappa yp}AC\ T_{\kappa yp}AC\ T_{\kappa yp}CCA\text{-}Lys\text{-}CONH_2$	76.9
Biotin-(egl)5- GT _{tcyp} C CT _{tcyp} G T _{tycp} AG T _{tcyp} TC ATT-Lys-CONH2	76.4

^atycp=PNA residue derived from (S,S)-trans-1,2-cyclopentance diamine, egl=8-amino-3,6-dioxaoctanoic acid ^bTm represents the melting temperature for the duplex formed between the indicated PNA and antiparallel DNA. Conditions for Tm measurement: 3.0 μm if PNA:DNA duplex, 150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0, 0.1 mM EDTA, UV measured at 260 nm from 90 to 20 °C, in 1 °C increments. All values are averages from two or more experiments

tcypPNA monomers. This methods review covers the shortened synthesis of this monomer. Although more detailed synthesis and characterization data is readily available, the goal of this methods review is to clearly describe the shortened synthesis in a stepwise manner so that labs that might normally avoid organic chemistry will not be intimidated and perhaps turn to tcypPNA residues if their PNA research could benefit from it.

2 Materials (See Note 1)

- 1. (1*S*,2*S*)-*trans*-*N*-Boc-1,2-cyclopentanediamine can be purchased from either Entrechem Biotechnology or Sigma Aldrich (*see* **Note** 2).
- 2. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC*HCl) was purchased from Sigma Aldrich.
- 3. Triethylamine (TEA) was purchased from Sigma Aldrich.
- 4. Dimethyl formamide (DMF).
- 5. Lithium hydroxide (LiOH) was purchased from Sigma Aldrich.
- 6. Sodium bicarbonate (NaHCO₃) was purchased from Sigma Aldrich.
- 7. Sodium sulfate (Na₂SO₄) was purchased from Sigma Aldrich.
- 8. Ethyl acetate (EtOAc) was purchased from Sigma Aldrich.
- 9. 4-Dimethylaminopyridine (4-DMAP) was purchased from Sigma Aldrich.
- 10. Tetrahydrofuran (THF).

3 Methods (See Note 3)

- 1. Boc-protected (S,S) *trans* cyclopentane diamine (1.5 g, 7.6 mmol) is dissolved in 150 mL of dry DMF in a 250 mL round-bottom flask, stirring under N₂.
- 2. TEA (1.1 mL, 7.6 mmol) and methyl bromoacetate (0.6 mL, 6.8 mmol) are added dropwise via a syringe (*see* **Note 4**).
- 3. The reaction is stirred at room temperature for 3 h.
- 4. The reaction is diluted with 50 mL of saturated aqueous NaHCO₃.
- 5. The combined mixture is extracted with EtOAc (twice, 35 mL).
- The combined organic layers are washed with saturated NaCl solution (twice, 25 mL), dried over Na₂SO₄, and concentrated under reduced pressure.

- 7. The crude residue is purified via flash column chromatography [Rf=0.30 (EtOAc)] to yield *tcyp*PNA backbone as a colorless oil, which forms a colorless crystalline solid at room temperature. (The yield should be about 68 % or 1.26 g.)
- 8. The purified *tcyp*PNA backbone (1.26 g, 4.6 mmol) is dissolved in 25 mL of dry DMF in a 50 mL round-bottom flask.
- 9. The solution is put under N₂ and cooled to 0 °C via an ice bath.
- 10. Thymine acetic acid (1.27 g, 6.9 mmol) and DMAP (150 mg, 1.2 mmol) are added.
- 11. EDC*HCl (1.76 g, 9.2 mmol) is added to the solution which is allowed to stir for 10 min at 0 °C.
- 12. The ice bath is removed, and the solution is stirred for an additional 36 h.
- 13. The solution is added to H_2O (150 mL) and extracted with EtOAc (three times, 100 mL).
- 14. The combined organic layers are washed with saturated NaCl (four times, 125 mL), dried over Na₂SO₄, concentrated under reduced pressure, and dried under vacuum to yield the Bocprotected (S,S) *tcyp*PNA monomer methyl ester (thymine) as a colorless solid. If necessary, the solid was purified by flash column chromatography: R_f =0.21 (1 % MeOH/EtOAc) (expected yield about 87 % or 1.75 g).
- 15. The 1.75 g of Boc-protected (S,S) *tcyp*PNA monomer methyl ester (thymine (4.0 mmol)) is dissolved in 63 mL of THF and cooled to 0 °C via ice bath.
- 16. Lithium hydroxide monohydrate is dissolved in $53 \text{ mL H}_2\text{O}$ and added to the stirring solution slowly over 5 min.
- 17. Ice bath is removed, and the solution is stirred at room temperature for 5 h.
- 18. Dilute the mixture with 86 mL H₂O, and wash the aqueous solution with 95 mL of diethyl ether three times.
- 19. The aqueous layer is acidified with aqueous 3 N HCl to pH 1 (*see* **Note 3**).
- 20. The solution is extracted with 133 mL of EtOAc five times.
- 21. The combined organic layers are dried over Na₂SO₄, concentrated under reduced pressure, and dried under vacuum to yield the Boc-protected (S,S) *tcyp*PNA monomer (thymine) as a colorless solid. (The approximate yield should be about 96 % or 1.63 g.)

4 Notes

- 1. The equipment needed for this procedure is common to an organic chemistry lab. A stirring plate, round-bottom flasks, separatory funnels, a rotary evaporator, and silica packed columns. Characterization data can be acquired for each intermediate in the synthesis and can be matched to the full characterization data available in ref. 4.
- 2. If using cyclopentane diamine purchased from Sigma Aldrich, our lab found it useful to recrystallize the diamine before synthesis to increase the enantiomeric purity.
- 3. The procedure as described has been adapted from ref. 4. The procedure as described should result in about 1.6 g or 3.8 mmol of Boc-protected (S,S) *tcyp*PNA monomer (thymine). The reaction can easily be scaled up or down depending on the amount of PNA monomer needed for study.
- 4. It is very important that methyl bromo acetate is added slowly to the solution. Increasing the concentration too quickly will result in a large amount of dialkylated side product. It is for this reason also that the methyl bromo acetate is the limiting reagent in the reaction.

References

- Porcheddu A, Giacomelli G (2005) Peptide nucleic acids (PNAs), a chemical overview. Curr Med Chem 12:2561–2599
- Corradini R, Sforza S, Tedeschi T, Totsingan F, Marchelli R (2007) Peptide nucleic acids with a structurally biased backbone: effects of conformational constraints and stereochemistry. Curr Top Med Chem 7:681–694
- Kumar VA, Ganesh KN (2005) Conformationally constrained PNA analogues: structural evolution toward DNA/RNA biding selectivity. Acc Chem Res 38:404–412
- Pokorski JK, Witschi MA, Purnell BL, Appella DH (2004) (S, S)-trans-cyclopentaneconstrained peptide nucleic acids. A general backbone modification that improves binding

- affinity and sequence specificity. J Am Chem Soc 126:15067–15073
- Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH (2006) A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267
- Englund EA, Xu Q, Witschi MA, Appella DH (2006) PNA-DNA duplexes, triplexes, and quadruplexes are stabilized with *trans*-cyclopentane units. J Am Chem Soc 128:16456–16457
- Sen A, Nielsen PE (2006) Unique properties of purine/pyrimidine asymmetric PNA DNA duplexes: differential stabilization of PNA DNA duplexes by purines in the PNA strand. Biophys J 90:1329–1337

Chapter 3

Chiral PNAs with Constrained Open-Chain Backbones

Roberto Corradini, Tullia Tedeschi, Stefano Sforza, and Rosangela Marchelli

Abstract

Chiral open-chain PNAs have been shown to have improved properties in terms of control of helical handedness, DNA affinity, sequence selectivity, and cellular uptake. They can be synthesized either using preformed chiral monomers or by means of a submonomeric strategy. The former is preferred when only a stereogenic center is present at C-5, whereas for PNA-bearing substituents at C-2, the submonomeric approach is preferred, since racemization, generally occurring during the solid-phase synthesis, can be minimized by this procedure. Here we describe the protocols for the synthesis of PNA oligomers containing C-2- or C-5- (or both) modified monomers and a GC method for checking the optical purity of C-2modified PNAs.

Key words Stereochemistry, Chiral PNA, Submonomeric strategy, Optical purity, Solid-phase synthesis

Acronym List

BTSA N,O-Bis(trimethylsilyl)acetamide **CMB** Carboxymethyl nucleobase DCC N, N-dicyclohexylcarbodiimide

DCM Dichloromethane

DIC N, N-diisopropylcarbodiimide DIPEA N, N-diisopropylethylamine

DhBTOH 3-hydroxy-1,2,3-benzotriazin-4(3H)-one

DMF N, N-dimethylformamide

EDC N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride

HBTU O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

1-hydroxy-1,2,3-benzotriazole **HOBt MBHA** 4-methyl benzhydrylamine **NMP** N-methylpyrrolidone TFA Trifluoroacetic acid

TFMSA Trifluoromethanesulfonic acid

1 Introduction

Chiral open-chain PNAs have been shown to have improved properties in terms of control of helical handedness, DNA affinity, sequence selectivity, and cellular uptake. They can be synthesized either using preformed chiral monomers or by means of a submonomeric strategy. The former is preferred when only a stereogenic center is present at C-5, whereas for PNA bearing a stereogenic center at C-2, the submonomeric approach is preferred, since racemization, generally occurring during the solid-phase synthesis, can be minimized by this procedure. Here we describe the protocols for the synthesis of PNA oligomers containing C-2- or C-5- (or both) modified monomers and a GC method for checking the optical purity of C-2-modified PNAs.

Many modifications of the basic PNA structure have been proposed in order to improve the performance of these DNA analogues in terms of affinity and specificity towards complementary oligonucleotide sequences. Actually many of them involved the presence of one or more stereogenic centers, allowing to study the effect of chirality on the PNA preferred handedness and, as a consequence, on DNA recognition [1].

Chiral PNA derivatives can be divided into two general classes (Fig. 1): (a) flexible, acyclic PNA molecules, with side chains derived from amino acids (such as lysine or alanine), and (b) highly

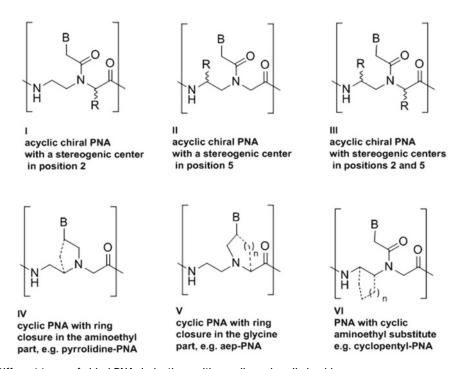


Fig. 1 Different types of chiral PNA derivatives with acyclic and cyclic backbones

constrained cyclic PNA oligomers, which can be obtained from proline or from cyclohexane or cyclopentane derivatives.

In this chapter we focus on the use of chiral open-chain PNA including one or more modified units of type I–III monomers. Chiral monomers of type I were first described by Nielsen and collaborators [2–4] and then widely used by our group [5, 6]. Type II PNAs were described for the first time by Liang [8] and then later on used by others using positively charged side chains [9–12]. The combination of these two models led us to propose the type III PNAs as new entities [13, 14].

The introduction of stereogenic centers bearing side chains into the PNA backbone affords the possibility to modulate the PNA properties at different levels: (a) control of the DNA affinity by additional interactions provided by the side chains; (b) stereochemical bias affecting the ability to form helical structures; (c) selectivity in the DNA/RNA binding, in particular direction control (antiparallel vs. parallel orientation) and mismatch selectivity; and (d) increase of cellular permeability.

1.1 Effect of Stereochemistry on Helical Preference

The effect of stereochemistry and of the side chains on DNA binding ability can hardly be predicted. Although, as a general rule, the presence of a substituent either in positon-2 or -5 creates a steric hindrance with the neighboring groups, thus inducing a decrease in the PNA–DNA stability, this effect can be counterbalanced by the electrostatic attractive interactions between DNA and the positively charged side chains on PNA, such as those derived from lysine or arginine synthons, and by the pre-organization of the PNA into a preferred helical structure, thus minimizing the entropy loss upon binding to DNA or RNA and eventually improving the duplex stability.

The effects on the helical induction are stronger if the stereogenic center(s) is placed in the middle of the PNA strands [5, 6], whereas if the chiral monomers are close to the ends of PNA, they are usually quite modest.

The effect of stereochemistry on the helical induction in PNA strands has been systematically studied in the case of acyclic chiral PNAs containing lysine units placed in the middle of the PNA strand. They generally show a preference for either left-handed or right-handed helices according to the configuration(s) of the stereogenic center(s) inserted (*see* Note 1).

The effects of the preferred helical handedness for each type of substitution are reported in Table 1 [14].

As one can see, the melting temperature (Tm) of the PNA:DNA duplex with a PNA modified at C-2 with a D-stereogenic center is higher than that observed for the duplex involving the achiral PNA but even higher with the PNA modified at C-5 with a L-stereogenic center and with the 2D,5L-modified PNA. All three modified PNAs have preference for forming righ-handed helices, as evaluated from handedness of PNA:PNA duplexes. On the contrary the

Table 1
Correlation between induction of helicity and DNA binding ability induced by the presence of a single chiral PNA monomer substituted at C-2, C-5, or at both positions

Monomer stereochemistry	Helicity induction by C-2	Helicity induction by C-5	•	
2D,5L	Right-handed	Right-handed	Right-handed (+++)	57
5L	-	Right-handed	Right-handed (++)	56
2L,5L	Left-handed	Right-handed	Right-handed (+)	52
2D	Right-handed	-	Right-handed (+)	52
Achiral	-	-	None	50
2L	Left-handed	-	Left-handed (-)	47
2D,5D	Right-handed	Left-handed	Left-handed (-)	33
5D	-	Left-handed	Left-handed ()	32
2L,5D	Left-handed	Left-handed	Left-handed ()	<20

(PNA sequence: $GTAGAT_{Lys}^*CACT$, where T_{Lys}^* denotes a Lys-based modified PNA monomer) ^aHelical preference obtained assigning (++) to induction by the 5L and (+) to induction by the 2D-substituent; (--) to induction by the 5D and (-) to induction by the 2L-substituent

2-L-, the 5-D-, and the 2L,5D-modified PNAs, which give rise to duplexes with DNA with lower Tm, have a strong preference for left-handedness. On the base of this study the preferred handedness of PNA strands containing acyclic chiral PNA monomers can be predicted: for 2D- or 5L- or 2D,5L-PNA the right-handedness is preferred; for 2L or 5D or 2L,5D left-handedness is preferred; for 2L,5L there is a chiral conflict, but the induction exerted by the stereocenter in position 5 is stronger, and thus right-handedness is preferred; for 2D,5D there is also a chiral conflict, but the induction exerted by the stereocenter in position 5 is stronger, and thus left-handedness is preferred.

1.2 Effect of Stereochemistry on DNA Binding and Selectivity

The preference for a given helical handedness, in turn, affects the affinity of the binding to nucleic acids (DNA or RNA), according to the principle that, since DNA and RNA generally adopt right-handed conformations, PNAs with a preference for right-handedness are generally favored in binding DNA and RNA [13, 14] (Table 1).

Other factors also play important roles (such as the presence of a positive or a negative charge in the backbone as well as steric hindrance) so that the overall stability of the chiral PNA–nucleic acid complex will emerge as a delicate balance of these factors. However, when considering two enantiomeric PNAs, the one preferring a right-handed helical conformation will bind complementary nucleic acids better than its enantiomer, with a difference which will be strictly related to the strength of the helical induction in the PNA strand [14] (see Note 2).