1ll-
e,
I‘_._.___ 5 u‘h
1

Colors,

SVG
Patterns &
Gradients

PAINTING VECTOR GRAPHICS

Amelia Bellamy-Royds

SVG Colors, Gradients,
& Patterns

Painting Vector Graphics

Amelia Bellamy-Royds
and Kurt Cagle

Beijing + Boston + Farnham -« Sebastopol + Tokyo OREILLY®

SVG Colors, Gradients, & Patterns
by Author Name

Copyright © 2015

This is a legal notice of some kind. You can add notes about the kind of license you
are using for your book (e.g., Creative Commons), or anything else you feel you
need to specify.

If your book has an ISBN or a book ID number, add it here as well.

Table of Contents

Preface. .. .o vii
1. Things You Should Already Know.................cieenn. 1
2. ThePaintersModel...............coviiiiiiiiiiiiiiii 17
Fill ‘er Up with the fill Property 18
Stroke It with the stroke Property 21
Stroking the Fill and Filling the Stroke 26
Take a Hint with Rendering Properties 35
3. Creating Colors. ..ovoveverie ittt 39
Misty Rose by Any Other Name 39
A Rainbow in Three Colors 44
Custom Colors 47
Mixing and Matching 55
4, BecomingTransparent.........coovvvviiiiieeneennennennnnns 59
See-Through Styles 59
The Net Effect 64
5. ServingPaint........coiiiiiiiiiii e 69
Paint and Wallpaper 70
Identifying Your Assets 71
The Solid Gradient 74
6. SimpleGradients............coiiiiiiiiiiiiiiiiii i 81

Gradiated Gradients 81

Transparency Gradients 84

Controlling the Color Transition 85
. Gradients in All Shapesand Sizes................ccovvienntn. 92
The Gradient Vector 91
The Object Bounding Box 96
Drawing Outside the Box 100
Gradients, Transformed 106
. AndRepeat.........coiiiiiiiii i i 117
How to Spread Your Gradient 117
Reflections on Infinite Gradients 119
Repeating without Reflecting 120
. Radial Gradients.................oooiiiiiiiiin 123
Radial Gradient Basics 123
Filling the Box 125
Scaling the Circle 130
Adjusting the Focus 133
Transforming Radial Gradients 136
Grand Gradients 144
. Tilesand Textures..........cooiiiiiiiiiiiiiiiiiiiiiiinn, 151
Building a Building Block 152
Stretching to Fit 159
Laying Tiles 162
Transformed Tiles 168
. Picture-PerfectPatterns................ooiiiiiiiii 177
The Layered Look 177
Preserved Patterns 181
Background Images, SVG-style 185
Textured Text. ... 195
Bounding Text 195
Switching Styles Mid-Stream 200
. Painting Lines.......ooviiiiiiiiiiiiiii i i 205
Beyond the Edges 205
The Empty Box 208
Using the Coordinate Space 215

| Table of Contents

Patterned Lines 219

T4, Motion Pictures. ...coovvrvei ittt it ienens 223
Animation Options 224
Coordinated Animation 228
Animated Interactions 233

A. Color Keywordsand Syntax..........ccovvvvvinniinniennnens 247
B. Elements, Attributes, and Style Properties.................... 255
11 = 263

Table of Contents | v

Preface

This book takes a deep dive into a specific aspect of SVG, painting.
Painting not with oils or watercolor, but with graphical instructions
that a computer can transform into colored pixels. The book
explores the creative possibilities, and also the potential pitfalls. Tt
describes the basics, but also suggests how you can mix and match
the tools at your disposal to generate complex effects.

This book was born from another project, an introduction to using
SVG on the web. In order to keep that book a manageable length—
and keep it suitable for introductory audiences—many details and
complexities had to be skimmed over. But those details and com-
plexities add up to the full, wonderful potential of SVG as a graphics
format. Once you understand the basics of SVG, you can start think-
ing about creating more intricate drawings and more nuanced
effects.

What We'll Cover

If youre reading this, hopefully youre already familiar with the
basics of SVG—how to define a graphic as a set of shapes, and how
to use that graphic either as a stand-alone image file or as markup in
an HTML page. If you're not sure if youre ready, Chapter 1 reviews
the basic concepts we'll expect you to know.

The rest of the book focuses on the Colors, Patterns, and Gradients
described in the title:

o Chapter 2 discusses the rendering model used to convert SVG
code into visual graphics, and introduces the basic properties

vii

you can set on your shapes and text to control how they are
painted to the screen.

Chapter 3 discusses color: how it works in nature, how it works
on the computer, and the many different ways it can be specified
within your SVG code.

Chapter 4 discusses transparency, or more specifically, opacity;
it introduces the many ways you can control the opacity of your
graphics, and how these affect the end result.

Chapter 5 introduces the concept of a paint server: complex
graphics content that defines how other SVG shapes and text
should be painted to the screen. It also introduces the solid
color paint server, which is actually more useful than it first
sounds.

Chapter 6 looks at gradients with a particular focus on the dif-
ferent color transition effects you can achieve by adjusting color
stop positions and properties.

Chapter 7 explores the ways in which you can manipulate a lin-
ear gradient to move it within the shape being painted.

Chapter 8 covers repeating linear gradients and some of the
effects you can create with them.

Chapter 9 looks at radial gradients, including repeated radial
gradients, and concludes with some examples of creating com-
plex effects with multiple gradients.

Chapter 11 introduces the <pattern> element, using it to define
a single block of graphics that can be used to fill or stroke
shapes or text.

Chapter 10 explores the more conventional usage of patterns, to
create repeating tiles and textures.

Chapter 13 looks at some of the issues that come into play when
using paint servers to paint strokes instead of fill regions.

Chapter 14 gives some examples of animated paint servers and
discusses the benefits and limitations of the different animation
methods available in SVG.

At the end of the book, two appendices provide a quick reference for
the basic syntax you'll need to put this all to use:

viii

| Preface

o Appendix A recaps all the ways you can define colors, including
all the pre-defined color keywords.

o Appendix B summarizes all the paint server elements, their
attributes, and the related style properties.

About This Book

Whether youre casually flipping through the book, or reading it
meticulously cover-to-cover, you can get more from it by under-
standing the following little extras used to provide additional infor-
mation.

Conventions Used in This Book
(O’Reilly boilerplate on code & term formatting)
Tips like this will be used to highlight particu-

larly tricky aspects of SVG, or simple shortcuts
that might not be obvious at first glance.

Notes like this will be used for more general
asides and interesting background information.

Warnings like this will highlight combatibility
problems between different web browsers (or
1 other software), or between SVG as an XML file
\ versus SVG in HTML pages.

About the Examples
(Where to download sample files or view online, compatibility info)

(O’Reilly boilerplate on copyright & permissions)

How to Contact Us
(OReilly boilerplate)

Preface | ix

Acknowledgements
(Thank you, thank you very much)

x | Preface

CHAPTER 1
Things You Should Already Know

The rest of this book is written with the assumption that you already
know something about SVG, web design in general, and maybe even
a little JavaScript programming.

However, there are always little quirks of a language that some peo-
ple think are straightforward and other, equally talented, developers
have never heard of. So this chapter gives a quick review of topics
that you might want to brush up on—if you dont already know
them.

SVG is Drawing with Code
An SVG is an image file. It is perfectly possible to only use it as
an image file, the same way you would use other image formats
such as PNG or JPEG. You can create and edit an SVG in a vis-
ual editor. You can embed it in web pages as an image.

But SVG is more than an image. It is a structured document
containing markup elements, text, and style instructions. While
other image formats tell the computer which color to draw at
which point on the screen, SVG tells the computer how to
rebuild the graphic from its component parts. That has two
main consequences:

o The final appearance of an SVG depends on how well the
computer displaying it follows the SVG instructions. Cross-
browser compatibility is often a concern.

o It is easy to edit an SVG, to add, remove, or modify parts of
it without changing the rest. You can do this in your editor,

1"

but you can also do it dynamically in your web browser to
create animated or interactive graphics.

SVG is Always Open Source

Not only is an SVG a set of coded instructions for a computer, it
is also a human-readable text file. You can edit your SVG in a
text editor. Even better, you can edit SVG in a code editor with
syntax highlighting and autocomplete!

The examples in this book all focus on the basic SVG code. You
can, of course, use a visual editor to draw shapes, select colors,
and otherwise fuss with the appearance of your graphic. But for
full control, you will need to take a look at the actual code that
editor creates.

SVG is XML (and sometimes HTML)

The SVG code you view in your text editor looks an awful lot
like HTML code—full of angle brackets and attributes—but a
stand-alone SVG file is parsed as an XML document. This
means that your SVG can be parsed and manipulated by tools
meant for XML in general. It also means that your web browser
won't display anything if you forget to include the XML name-
spaces or mixed up an important detail of XML syntax.

Nonetheless, when you insert SVG code directly in HTML 5
markup, it is processed by the HTML parser. The HTML parser
forgives errors (like missing closing tags or unquoted attributes)
that would halt the XML parser. But it also ignores any custom
namespaces, downcases any unrecognized attribute or tag
names, and otherwise changes things up in ways you might not
expect.

SVG is Squishable

The syntax for SVG was designed to make it easy to read and
understand, not to make it compact. This can make certain SVG
files seem rather verbose and redundant. However, it also makes
SVG very suitable for gzip compression, which should always be
used when serving SVG on the web. It will usually reduce file
sizes by more than half, sometimes much more. If storing a
gzipped SVG on a regular file server, it is typical to use the .svgz
extension.

12

Chapter 1: Things You Should Already Know

SVG is also bloatable, which makes it squishable in another way.
SVG editors can add their own elements and attributes to an
SVG file by giving them unique XML namespaces. A class of
SVG optimizing tools has developed that will strip out code that
does not affect the final result. Just be careful about the settings
you use—optimizers can remove attributes you might want later
if you're manipulating the code yourself!

Pictures are a Collection of Shapes

So what does all that code represent? Shapes, of course! (And
text and embedded images, but we'll get to that in a moment...)
SVG has only a few different shape elements: <rect>, <circle>,
<ellipse>, <line>, <polyline>, <polygon>, and <path>. How-
ever, those last three can be extensively customized to represent
any shape you can imagine, to a certain degree of precision. The
<path> in particular contains its own coded language for
describing the curves and lines that create that shape.

Images Can Have Images Inside Them

An SVG is an image, but it is also a document, and that docu-
ment can contain other images, using the <image> element. The
embedded images could be other SVG files, or they could be
raster images such as PNG or JPEG. However, for security and
performance reasons, some uses of SVG prevent those external
images (and other external resources such as stylesheets or
fonts) from being downloaded.

Text is Art
The one other building block in SVG is text. But text isn’t an
alternative to graphics—the letters that make up that text are
treated like another type of vector shape. Importantly for this
book, text can be painted using the exact same style properties
as vector shapes.

Art is Math
The core of all vector graphics (shapes or text) is that the end
result can be defined using mathematical parameters (the XML
attributes) to the browser’s SVG rendering functions for each
element. The most pervasive mathematical concept in SVG is
the coordinate system, used to define the position of every point
in the graphic. You can control the initial coordinate system by
setting a viewBox attribute, and you can use coordinate system

Things You Should Already Know | 13

transformations to shift, stretch, rotate and skew the grid for
certain elements.

An SVG is a Limited View of an Infinite Canvas

There are no limits on the coordinates you can give for your
vector shapes (except for the practical limits of computer num-
ber precision). The only shapes displayed, however, are those
that fit within the particular range of coordinates established by
the viewBox attribute. This range of coordinates is scaled to fit
the available area (the “viewport”), with accomodations for mis-
matched aspect ratios controlled by the preserveAspectRatio
value. You can create nested viewports with nested <svg> ele-
ments or re-used <symbol> elements; in addition to providing
regions of aspect ratio control, these re-define how percentage
lengths are interpretted for child content.

The distinction between viewBox and “viewport” is one of the
more confusing aspects of the SVG specs. As we'll see when we
get to Chapter 11, the <pattern> element (and also the
<marker> element) can have a viewBox attribute, but does not
establish a viewport for the purposes of percentage lengths.

SVG has Structure

The structure of an SVG includes the basic shapes, text, and
images that are drawn to the screen, and the attributes that
define their geometry. But SVG can have more structure than
that, with elements grouped into logical clusters. Those groups
can be styled and their coordinate systems transformed. But
they can also be given accessible names and descriptions to help
explain exactly what the graphics represent.

SVG has Style

SVG graphics can consist solely of XML, with all style informa-
tion indicated by presentation attributes. However, these pre-
sentation styles can also be specified with CSS rules, allowing
styles to be grouped by class or element type. Using CSS also
allows conditional styles to depend on media features or transi-
ent states such as :hover or :focus.

The strict separation between geometric structure (XML
attributes) and presentation style (presentation attributes or CSS
style rules) has always been a little arbitrary. As SVG moves for-
ward, expect it to collapse even more. The SVG 2 draft specifi-

14

Chapter 1: Things You Should Already Know

cations promote many layout attributes to become presentation
attributes. This opens these properties to all the syntactic flexi-
bility CSS offers: classes of similar elements can be given match-
ing sizes with a single style rule, and those sizes or layout can be
modified with CSS pseudoclasses or media queries.

Behind All Good Markup is a Great DOM
The SVG markup and styles are translated into a document
object model (DOM) within a web browser. This DOM can
then be manipulated using JavaScript. All the core DOM meth-
ods defined for all XML content apply, so you can create and re-
order elements, get and set attributes, and query the computed
style values.

The SVG specifications define many unique properties and
methods for SVG DOM elements. These make it easier to
manipulate the geometry of a graphic mathematically. Support
for SVG DOM in web browsers is not as good as one might
hope, but certain methods—such as determining the length of a
curved path—are indispensable for SVG designs.

SVG Can Move
In a dynamic SVG viewer (e.g., web browser) with scripting
support, you can use those scripts to create animated and inter-
active graphics. However, SVG also supports declarative means
of interaction, whereby you define the scope of an entire inter-
action and the browser applies it with its own optimizations.
There are two means of doing this:

« using animation elements in the markup, with a syntax bor-
rowed from the Synchronized Multimedia Integration Lan-
guage (SMIL)

« using CSS animations and transitions of presentation styles

At the time of writing, scripted animation is supported in all
web browsers, but may be blocked for certain uses of SVG.
Declarative animation (SMIL and CSS) is supported in most
browsers, but not all (particularly, not Internet Explorer).

SVG Can Change
Not only can individual SVG graphics change as you use them,
but the definition of SVG can change too. The established stan-
dard (at the time this book was written) is SVG 1.1, but work is
ongoing to develop a level 2 SVG specification with new fea-

Things You Should Already Know | 15

tures and clearer definitions of some existing features. Further-
more, because SVG uses CSS and JavaScript, and because it is
heavily integrated in HTML, it inherits changes to those lan-
guages, as well.

16 | Chapter 1: Things You Should Already Know

CHAPTER 2
The Painter’s Model

If I asked you to draw a yellow circle with a blue outline, would it
look the same as if I asked you to draw a blue circle and fill it in with
yellow?

If T asked you to draw a red pentagon and a green square centered
on the same spot on a page, would most of the image be red or
green?

There are no hard and fast rules when youre drawing things by
hand. If someone gives you ambiguous instructions, you can always
ask for clarification. But when you’re giving instructions to a com-
puter, it only has one way to follow them. So you need to make sure
you're saying exactly what you mean.

Even if you use SVG a lot (and we’re going to assume you use it at
least a little), you probably haven’t given much thought to how the
computer converts your SVG code into colored patterns on the
screen. If youre going to really make the most of those colored pat-
terns, however, you need to know how your instructions will be
interpretted.

This chapter discusses the basics of the SVG rendering model, the
process by which the computer generates a drawing from SVG
markup and styles. It reviews the basic fill and stroke properties
that define how you want shapes or text to be painted. The entire
rest of the book can really summed up as different ways you can
specify fill or stroke values.

17

The SVG rendering model is known as a painter’s model. Like layers
of paint on a wall, content on top obscures content below. The SVG
specifications define which content gets put on top of which other
content. However, this chapter also introduces two properties, z-
index and paint-order, which allow you to change up the render-
ing rules. These properties are newly introduced in SVG 2, and are
only just starting to be supported in web browsers. We therefore also
show how you can achieve the same effect with SVG 1.1 code.

Fill ‘er Up with the f111 Property

The basic elements and attributes in you SVG code define precise
geometric shapes. For example, a one-inch square, positioned with
its top left corner at the coordinate system origin, looks like this:

<rect width="11n" height="1in" />

A circle ten centimeters in diameter, centered on the middle of the
coordinate system, is created with code like the following:

<circle cx="50%" cy="50%" r="5cm" [>

If you used either of those elements in an SVG, without any style
information, it would be displayed as a solid black region exactly
matching the dimensions you specify. This is the default fill value:
solid black.

The fi11 property tells the SVG-rendering software what to do with
that geometric shape. For every pixel on the screen—or ink spot on
the paper—the software determines if that point is inside or outside
of the shape. If it is inside, the software turns to the fill value to
find out what to do next.

In the simple case (like the default black), the fill value is a color and
all the points inside the shape get replaced by that color. In other
cases, the fill value is a direction to look up more complicated paint-
ing code. Where to look it up is indicated by a URL referencing the
id of an SVG element representing the instructions (a paint server,
which we'll talk more about starting in Chapter 5)

If you dor’t want the software to fill in the shape,
all you have to do is say so. The fill property
also takes a value of none.

18 | Chapter2: The Painter’s Model

The fill is by default painted solid and opaque (unless there are dif-
ferent instructions in the paint server). The fill-opacity property
can adjust this. It takes a decimal number as a value: values between
0 and 1 cause the shape’s paint to be blended with the colors of the
background. A value of 1 (the default) is opaque, while a value of 0
has much the same effect as fill: none. We'll discuss opacity in
detail in Chapter 4.

When it is not clear which sections of the shape are inside versus
outside, the fill-rule property gives the computer exact instruc-
tion. It affects <path> elements with donut holes inside them, as well
as paths, polygons, and polylines with criss-crossing edges.

The fill-rule property has two options:

 evenodd switches between inside and outside every time you
cross an edge.

o nonzero (the default) gets “more inside” when you cross an edge
that is drawn in the same direction as the last one, and only gets
back to outside again when you have cancelled them all out by
crossing edges in the opposite direction.

Example 2-1 draws a criss-crossed <polygon>, first with the default
nonzero fill rule and then with an evenodd fill rule; Figure 2-1 shows
the result. The shapes have a thin dark stroke around the edges so
you can see them even when the shape is filled on both sides of the
edge.

Example 2-1. Modifying the fill region with the fill-rule property

<svg xmlns="http://www.w3.0rg/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
viewBox="0 0 400 200" width="4.31n" height="2.15in">
<title>Fill-rule comparison</title>
<rect fill="1lightSkyBlue" height="100%" width="100%" /> 1]

<polygon id="p"
fill="blueViolet" stroke="navy"
points="20,180 20,20 180,20 180,180 60,60 140,60" /> E’
<use xlink:href="#p" x="50%" fill-rule="evenodd" /> E’
</svg>

@ The opening <svg> element establishes the coordinate system
and sets the default size of the printed figure. A <rect> element

Fill ‘er Up with the fill Property | 19

Figure 2-1. A polygon with nonzero fill rule (left) and with evenodd
fill rule (right)

adds a solid-color backdrop. For this simple SVG code, styles
are set with presentation attributes.

® The basic polygon has fill and stroke styles, but the fill-
rule property will inherit the default nonzero value.

® A duplicated copy of the same polygon is offset horizontally by
half the width of the SVG. The copied polygon will inherit the
fill-rule="evenodd" value set on the <use> element.

No matter how many times the edges or sub-paths cross over each
other, each point is either inside or outside the shape. Areas are not
painted twice just because they are inside two different sub-paths.
That may not seem like a relevant distinction when the fill is a solid
color, but it becomes important when fill is partially transparent.

Future Focus
Filling in the Future

The discussion of the fill property in this section has focused on the
way it is currently defined in the stable SVG 1.1 specifications. The in-
progress SVG 2 specifications will offer more flexibility to the way shapes
are filled, most notably by allowing a single shape to have multiple fill lay-

20 | Chapter2:The Painter’s Model

ers. These proposed features will be discussed in more detail elsewhere in
the book, in future-focused asides such as this.

Every shape in SVG, as well as text, can be filled—and will be filled
by default. This includes open-ended <path> elements and <poly
line> elements, which define a shape where the end of the line does
not connect with the beginning. The fill region of these shapes is
created by connecting the final point back to the beginning in a
straight line. If it ends up crossing other edges as it does so, the
fill-rule calculations apply.

Open segments within a <path> are closed by
connecting them back to the initial point on that
sub-path: the last point created by a move-to
command.

Even a straight <line> element is technically filled in by default:
however, because the return line that connects the end point to the
beginning exactly overlaps the original line, the resulting shape does
not enclose any area. No points are inside the shape, and so no
points are affected by the fill value. You need to stroke the line if you
want to see it.

Stroke It with the stroke Property

In computer graphics, stroking a shape means drawing a line along
its edge. Different programs have different interpretations of what
that can mean.

In SVG (currently, anyway), stroking is implemented by generating
a secondary shape extending outwards and inwards from the edges
of the main shape. That stroke region is then painted using the same
approach as for filling the main shape: the software scans across,
and determines whether a point is inside or outside the stroke. If the
point is inside, the software uses the painting instructions from the
stroke property to assign a color.

Stroke It with the stroke Property | 21

Each section of the stroke-shape is only painted
once, regardless of whether the strokes from dif-
ferent edges of the shape overlap or cross each
other.

The default for stroke is none, meaning don’t paint a stroke region
at all. Just like for fil1, the other options are a color value or a refer-
ence to a paint server element.

Just as with fill, there is a stroke-opacity property to modify the
stroke paint. Just as with fill-opacity, we'll discuss stroke-
opacity in more detail in Chapter 4.

There are many other stroke-related properties. Were not going to
talk about them much in this book, but they control the geometry of
the stroke region. As a quick reference, they are as follows:

stroke-width
The thickness of the stroke, as a length, number of user units, or
percentage of the weighted width and height of the coordinate
system. In SVG 1.1, the stroke region is always centered on the
edge of the shape, so half the stroke width extends outside it.

stroke-1linecap
The approach to use for stroking around open ends of a path or
line; the default butt trims the stroke tight and perpendicular to
the endpoint. The other options, round and square, extend the
stroke by half the stroke width, in the specified shape.

stroke-1linejoin
The approach to use for stroking around corners in the shape;
the default miter extends the strokes in straight lines until they
meet in a point. The other options are round (use a circular arc
to connect the two strokes) and bevel (connect the two strokes
with an additional straight line).

stroke-miterlimit
The maximum distance to extend a mitered line join beyond the
official edge of the shape, as a multiple of the stroke width
(default 4 times the width). If the stroke edges don’t meet in a
point within that distance, a bevelled line join is used instead.

22 | Chapter2: The Painter’s Model

